This presentation

→ Who am I?
→ What is ASCOS?
→ Who is involved?
→ Work packages
→ Outline Certification Approach
→ Case Studies
→ Refinement of Approach
→ Conclusions
Who am I?

→ Stephen Bull
→ Senior Safety Engineer with Ebeni Limited
→ 20 years’ experience in safety related systems
 → aviation and rail sectors
 → software development
 → safety assurance and safety cases
What is ASCOS?

→ **Goal:** “To develop certification process adaptations, with supporting tools for safety based design and safety monitoring, so as to ease the introduction and certification of safety enhancements” in the European aviation industry

→ EU-funded under the Seventh Framework Programme
→ Research project
→ Started 1 July 2012
→ Original duration 36 months
→ Total cost ~ EUR 5m
Project Workpackages

- Novel approach for certification processes
- Baseline risk picture & SPIs for continuous safety monitoring
- Certification case studies
- Users Group
- Total Aviation Safety Methodology
- Validation
- Safety based design systems and tools
Who is involved?

→ Industry partners:

→ Led by NLR (Dutch National Aerospace Laboratory)
→ User Group including:
 → CAAs (Dutch, Polish, UK), EASA, EUROCAE
 → FAA, FAST, SESAR
Total Aviation System

AVIATION SAFETY AND CERTIFICATION OF NEW OPERATIONS AND SYSTEMS

Total Aviation System

- Airspace planning
 - Position
 - Flight plan
 - Flight path

Aircraft operator

- Air Traffic Control
 - AIS
 - MET
 - Maintenance of equipment
 - Staff competence and licensing

ATM / ANS equipment

Aerodrome

- Runways
- Apron
- Lighting
- Security
- Ground handling
- Staff competence and licensing

Terminal facilities

Weather conditions

Demand for air travel

Terrain

Affect operations

Assumed extremes

Define throughout requirements

Inform STCA

Inform ATM / ANS

Supply

Requirements

Design

Construction

Upgrade

Flight Crew (Selection, Training, Licensing, Ongoing competence)

Maintenance (Procedures, Recruitment, Training, Licensing, Ongoing Competence)

Flight Operations
Problems with current processes

→ Inter-domain issues
 → different safety standards
 → inconsistency of approach
 → ill-defined interfaces
 → lack of information exchange

→ (Safety) benefits of change not fully considered
→ Detailed specifications impede innovation
→ Lack of understanding of regulations
→ Concern over COTS certification
Certification approach - objective

→ Develop an outline certification approach that could be used to cover the certification of changes in the Total Aviation System
→ The new approach must offer improvements over the existing certification/approval processes in terms of
 → efficiency in cost and time
 → ability to analyse and demonstrate acceptable safety for new concepts and technologies
 → ability to analyse and consider the Total Aviation System rather than sub-elements in isolation
→ Whilst not undermining the efficacy of existing process!
Project Status

- Research
- Proposed Certification Approach (D1.3)
- Case Studies
- Refined Certification Approach (D1.5)
Certification Approach Overview

→ Eleven Step Approach Driven By Logical Argument
 → Covers Total Aviation System
 → Addresses whole lifecycle
→ Retains proven elements of existing approaches
→ Flexibility
 → for new technology
 → for cross-domain learning
→ Manages interfaces between domains
→ Overall argument needs an owner
Eleven Step Approach

→ 1. Define the change
→ 2. Define the certification argument (architecture)
→ 3. Develop and agree certification plan
→ 4. Specification
→ 5. Design
→ 6. Refinement of argument
→ 7. Implementation
→ 8. Transfer into operation – transition safety assessment
→ 9. Define arrangements for continuous safety monitoring
→ 10. Obtain initial operational certification
→ 11. Ongoing monitoring and maintenance of certification
Case Studies

→ Apply new approach on realistic examples
 → Only first steps of approach
 → Research only – not solution development
→ Four studies
 → RPAS failure management
 → Automatic Aircraft Recovery System
 → Separate certification for on-ground de-icing
 → ATM / CNS systems for improved surveillance
Step 1: Define the Change

→ Functional specification – not solution
→ Impact across aviation system
→ Applicable regulations
→ Organisations involved

→ Challenges
 → too deep too quickly – incomplete definition
 → scoping the change
 → CS1: RPAS AFMS only part of change
 → CS3: what is the change?
Step 2: Define the Argument

→ Rationale for argument framework
→ Example top level argument
→ Argument modularisation
→ Challenges
Rationale for Argument Framework

→ Logical argument *framework* for *total system* certification
 → No universal panacea
 → Flexibility – e.g. for new technology
 → Adaptable to maturity of existing approach
→ Integrate “arguments” made for each domain
 → Retain existing approaches within domains
 → Assess context of existing approaches
 → Identify, challenge and manage assumptions / gaps
 → Implicit and explicit
 → Arising from analysis and context
→ Managing / owning the argument
 → Different parts “owned” by different organisations
 → Requires maintenance throughout lifecycle
Logical Argument

C002: The change to the system is defined in the system definition [REF]

C10: Change X to the system is acceptably safe

C001: Acceptably safe is defined by the safety criteria in [REF]

SO: Argue on the basis of demonstrating safety from initial specification through to monitoring of safety in service

CI1: Change X is specified such that it will achieve and acceptable level of safety

CI2: Logical design for change X satisfies the specification and is realistic

CI3: Implementation of the logical design for change X is complete and correct

CI4: Transition to introduce change X is acceptably safe

CI5: The service(s) introduced by change X will continue to be demonstrated as acceptably safe in operational service
Modularisation - Example

- External environment
- Top level argument
- RPAS
- Other Aircraft
- ATM
- Pilot Procedures

RPAS:
- Aircraft Onboard Systems
- Comms Link
- Remote Pilot Station
- AAFMS

AVIATION SAFETY AND CERTIFICATION OF NEW OPERATIONS AND SYSTEMS

PRESENTATION TO SARSW BRISTOL 24TH MARCH 2015
Step 2: Define the Argument - Challenges

→ Why do we need an argument?
 → Is “argument” a loaded term?
 → Can’t we just follow standards?
→ Certification vs Acceptance
 → what is the goal of the argument?
→ What is our safety target?
 → inconsistent between domains
 → possible help from other ASCOS Work Packages
→ Who owns the argument?
Step 3: Develop and Agree the Certification Plan

→ How will the change be “certified”?
→ What standards / regulations?
→ What evidence will be presented?
→ When will evidence be presented?
→ Who is involved?
 → applicants
 → competent authorities

→ Challenges
 → multiple authorities
 → different actors at different stages
 → inconsistent standards / requirements
Steps 4-7: Safety of the Change - Overview

→ Detailed specification, design and implementation
 → FHA, PSSA, SSA – or similar processes
 → ARP 4754 where appropriate

→ Developing and supporting the argument
 → Using existing design and assessment processes where appropriate
 → Framework to adopt new processes where existing insufficient

→ Identifying and managing interfaces between domains
Steps 4-7: Safety of the Change - Challenges

→ Assessment process
 → Assessing adequacy of existing processes
 → Aligning the detailed argument to existing processes
 → How to adapt existing processes
→ Inter-domain
 → Trading off safety between domains
 → Managing interfaces between domains
→ Changing stakeholders
 → Different at each stage of argument
→ Support from risk model
The remaining steps (introduction and operation)

- 1. Define the change
- 2. Define the certification argument (architecture)
- 3. Develop and agree certification plan
- 4. Specification
- 5. Design
- 6. Refinement of argument
- 7. Implementation
- 8. Transfer into operation – transition safety assessment
- 9. Define arrangements for continuous safety monitoring
- 10. Obtain initial operational certification
- 11. Ongoing monitoring and maintenance of certification
Summary of Challenges

→ too deep too quickly (Step 1)
→ scoping the change (Step 1)
→ why do we need an argument? (Step 2)
→ inconsistent safety targets (Step 2)
→ who owns the argument? (Step 2)
→ multiple authorities (Step 3)
→ different stakeholders at different stages (Step 3)
→ inconsistent standards / requirements (Step 3)
→ assessing at the correct level of abstraction (Step 4-7)
→ inconsistent approaches between domains (Step 4-7)
→ terminology conflicts (general)
→ insufficient guidance (general)
Refining the Approach

- Focus more on understanding and scoping change
 - before considering an argument
- Retain overall logical argument framework
 - explain how existing approaches have implied arguments
- Improved guidance, in particular:
 - tailoring argument to specific change
 - integrating existing standards / processes
 - how to capture interfaces between domains
 - certification planning
- Guidance on terminology
- Creation of templates to illustrate common scenarios
Report outline
Where are we currently?

- Difficult to certify change spanning Total Aviation System
- Well-established approaches within domains
- Main challenges are where change crosses domains
 - Different approaches
 - Different safety targets
- Logical argument framework
- Case studies have identified areas for improvement
- Now refining the approach for publication
Project website

http://www.ascos-project.eu

→ ASCOS coordinator:
 → Dr. Ir. Lennaert Speijker
 → NLR Air Transport Safety Institute
 → Email: speijker@nlr-atsi.nl
 → Phone: +31 88 511 3654

→ Presenter
 → Stephen Bull
 → Ebeni Limited
 → Email: stephen.bull@ebeni.com
 → Phone: +44 1249 700555