This document presents the ASCOS Method for approval of changes to the Total Aviation System and is especially relevant for changes which challenge existing approval approaches, either because of novel technologies or because they impact multiple approval domains. The ASCOS Method forms a framework within which existing approaches can be adapted or augmented as required – thus maximising efficiency in demonstrating the safety of the proposed change. This document is relevant to all who are involved in the approval of such changes, including applicants and approving authorities.

Coordinator L.J.P. Speijker (NLR)
Work Package Manager B. Pauly (Thales Air Systems)

Grant Agreement No. 314299
Document Identification D1.5
Status Approved
Version 1.1
Date of Issue 24-09-2015
Classification Public
Executive Summary

Aviation is undergoing significant and fundamental change. The dramatic increase in traffic, driven by increased demand, along with environmental requirements and other pressures, is driving the introduction of novel concepts and technologies and increasing the integration between the different domains of the total aviation system (TAS). When coupled with differences in underlying approval approaches between domains, these changes make it imperative to streamline the approval processes used across the industry. The ASCOS Consortium proposes a consolidated approval method for use across all domains, building on existing good practices, guiding applicants and authorities to consider the full impact of a change on the TAS. This is a requirement of recent EASA rules, and ensures that interactions between parts of the TAS are fully managed. The ASCOS Method is presented in the form of guidance to support the current EASA rulemaking programme without requiring further rule changes.

The ASCOS Method focuses on establishing an approval path for a change to the TAS, using existing approaches which are adapted and augmented only when necessary. (This may be to accommodate innovation, to ensure interfaces are managed or simply to streamline the process.) The ASCOS Method provides a framework for development of such adaptations, which provides support throughout the lifecycle, starting with identification of the concept and establishing its viability, through development and implementation into operation and sustainment. The activities do not depend on a particular lifecycle being followed. The ASCOS Method is not just applicable to certification; it is also applicable to more general approvals.

The ASCOS Method includes the development of a logical justification, in the form of a safety argument, that the proposed change achieves the required level of safety. The safety argument is presented as a hierarchical set of claims, supported by evidence, and is developed to consider all aspects of the TAS affected by the change. The ASCOS Method divides the safety argument into modules aligned to the domains of the TAS, which can be developed and decomposed further separately within the domains. Assurance contracts are used to manage the dependencies between modules. The modules allow the safety argument to be structured in a way which integrates with the existing structure and hierarchy of the organisations within the TAS. The concept of an argument architect is introduced to support management of the safety argument and of assurance contracts. The structure of the safety argument can be presented in a graphical form to aid understanding, although it is always supported by text to explain what is being claimed.

The ASCOS Method recognises the significant underlying differences in approach between domains, including levels of safety, assessment methods and terminology; sometimes different domains give significantly different meanings to the same term. Differences between domains are understandable given the structure and history of different parts of the TAS, but careful consideration is needed in building an integrated method. The
method does not in itself mandate how safety targets for a change should be established, but recognises that the current high level of safety must be maintained.

The ASCOS Method is capable of addressing a wide range of changes to the TAS, including introduction of new operational concepts, new organisations, revised processes or new aviation products that affect operation. It is applicable across all domains (including aircraft, ATM, aerodrome, crew training, maintenance activities and airspace structure) with the greatest benefits obtained for changes which span multiple domains.

Novelty and innovation require flexibility and thus the ASCOS Method provides a framework within which new approaches (e.g. goal-based justifications where the change is beyond what is envisaged by existing standards) can be adopted where necessary, while retaining or adapting existing approaches where appropriate.

Guidance is provided to show how the method should be adapted according to the needs of an individual change. This recognises that although the overall concept can be applied to any change, the detailed method will vary widely depending on the particular change to be made – for example, the safety argument for introduction of a new equipment item on an aircraft will be very different from the safety argument for a change to the arrivals concept at a particular aerodrome.

The ASCOS Method has been developed from the proposal made in ASCOS D1.3, taking input from participants in the ASCOS programme, including the safety monitoring and modelling tools, the case studies and validation exercises. The safety argument concepts are developed from earlier work by SESAR and EUROCONTROL. The ASCOS Method takes the aviation community closer to a fully optimised approach to the approval of change.

In summary, the ASCOS Method responds to the pressures in the aviation industry which are driving innovation and increased integration between domains and therefore making it imperative to streamline approval processes. The ASCOS Method integrates with the lifecycle of a change, from concept through to operational service, introducing activities which lead to building a safety argument supporting the application for approval. The proposed method considers the full impact of the change, and recognises and manages the interaction between domains. The method is also flexible to embrace innovation while encompassing existing established processes wherever appropriate.

Finally, further opportunities for improvement and refinement of the ASCOS Method have been identified. However, the greatest opportunity for improvement will come from application of the ASCOS Method. The ASCOS Consortium commends this ASCOS Method to EASA for adoption as a means of establishing approval for changes to the TAS within Europe.
Document Change Log

<table>
<thead>
<tr>
<th>Version</th>
<th>Author(s)</th>
<th>Date</th>
<th>Affected Sections</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Stephen Bull et al.</td>
<td>15-09-2015</td>
<td>All</td>
<td>Version for approval by PMT</td>
</tr>
<tr>
<td>1.1</td>
<td>Stephen Bull</td>
<td>24-09-2015</td>
<td>Front Page, B.3.8</td>
<td>Minor updates following review</td>
</tr>
</tbody>
</table>

Review and Approval of the Document

<table>
<thead>
<tr>
<th>Organisation Responsible for Review</th>
<th>Name of person reviewing the document</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certiflyer</td>
<td>G. Temme</td>
<td>07-09-2015</td>
</tr>
<tr>
<td>Ebeni</td>
<td>A. Simpson</td>
<td>07-09-2015</td>
</tr>
<tr>
<td>Institute of Aviation</td>
<td>K. Piwek, A. Iwaniuk</td>
<td>07-09-2015</td>
</tr>
<tr>
<td>CAA UK</td>
<td>T. Longhurst</td>
<td>07-09-2015</td>
</tr>
<tr>
<td>TU Delft</td>
<td>R. Curran, H. Udluft</td>
<td>07-09-2015</td>
</tr>
<tr>
<td>Organisation Responsible for Approval</td>
<td>Name of person approving the document</td>
<td>Date</td>
</tr>
<tr>
<td>Thales Air Systems SA</td>
<td>F. Kaakai, B. Pauly</td>
<td>11-09-2015</td>
</tr>
<tr>
<td>NLR</td>
<td>L.J.P. Speijker</td>
<td>25-09-2015</td>
</tr>
</tbody>
</table>
Document Distribution

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Commission</td>
<td>M. Kyriakopoulos</td>
</tr>
<tr>
<td>NLR</td>
<td>L. Speijker, A. Rutten, M.A. Piers, P. van der Geest, A. Roelen, J. Verstraeten, A. Balk, E. van de Sluis, M. Stuip, G. van Baren</td>
</tr>
<tr>
<td>Thales Air Systems GmbH</td>
<td>G. Schichtel, J.-M. Kraus</td>
</tr>
<tr>
<td>Thales Air Systems SA</td>
<td>B. Pauly, F. Kaakai</td>
</tr>
<tr>
<td>Airbus Defence and Space APSYS</td>
<td>S. Bravo Muñoz, J.P. Heckmann, M. Feuvrier</td>
</tr>
<tr>
<td>Civil Aviation Authority UK</td>
<td>L. Young, A. Eaton, S. Barker, T. Longhurst</td>
</tr>
<tr>
<td>ISDEFE</td>
<td>I. Etxebarria, C. Regidor Gil</td>
</tr>
<tr>
<td>CertiFlyer</td>
<td>G. Temme, M. Heiligers</td>
</tr>
<tr>
<td>Avanssa</td>
<td>N. Aghdassi</td>
</tr>
<tr>
<td>Ebeni</td>
<td>A. Simpson, J. Denness, S. Bull, Latham</td>
</tr>
<tr>
<td>Deep Blue</td>
<td>L. Save, S. Rozzi</td>
</tr>
<tr>
<td>JRC</td>
<td>W. Post</td>
</tr>
<tr>
<td>JPM</td>
<td>J. P. Magny</td>
</tr>
<tr>
<td>TU Delft</td>
<td>R. Curran, H. Udluft, P.C. Roling</td>
</tr>
<tr>
<td>Institute of Aviation</td>
<td>K. Piwek, A. Iwaniuk, B. Dziugiel</td>
</tr>
<tr>
<td>CAO</td>
<td>A. Ortyl, R. Zielinski</td>
</tr>
<tr>
<td>EASA</td>
<td>E. Isambert</td>
</tr>
<tr>
<td>FAA</td>
<td>J. Lapointe, T. Tessitore</td>
</tr>
<tr>
<td>SESAR JU</td>
<td>P. Mana</td>
</tr>
<tr>
<td>Eurocontrol</td>
<td>E. Perrin</td>
</tr>
<tr>
<td>CAA Netherlands</td>
<td>R. van de Boom</td>
</tr>
<tr>
<td>JARUS</td>
<td>R. van de Leijgraaf</td>
</tr>
<tr>
<td>SRC</td>
<td>J. Wilbrink, J. Nollet</td>
</tr>
<tr>
<td>ESASI</td>
<td>K. Conradi</td>
</tr>
<tr>
<td>Rockwell Collins</td>
<td>O. Bleeker, B. Biddenne</td>
</tr>
<tr>
<td>Dassault Aviation</td>
<td>B. Stoufflet, C. Champagne</td>
</tr>
<tr>
<td>ESA</td>
<td>T. Sgobba, M. Trujillo</td>
</tr>
<tr>
<td>EUROCAE</td>
<td>A. n'Diaye</td>
</tr>
<tr>
<td>TUV NORD Cert GmbH</td>
<td>H. Schorcht</td>
</tr>
<tr>
<td>FAST</td>
<td>R. den Hertog</td>
</tr>
</tbody>
</table>
Table of Contents

Executive Summary 3

Document Change Log 5
Review and Approval of the Document 5
Document Distribution 6
List of Figures 10
List of Tables 11

1 Introduction 12

1.1 The ASCOS Project 12
1.2 ASCOS Certification Process Work Package 13
1.3 Objective and Scope of D1.5 (this document) 15
1.4 Structure of this Document 16
1.5 Typographic Convention 17

2 Key Concepts 18

2.1 Certification and Approval 18
2.2 The Total Aviation System 18
2.3 Safety Argument 19
2.4 Making a change to the system 19
2.5 Acceptable Level of Safety 20
2.6 Criticality of interfaces 21
2.7 Performance based vs compliance based approaches 21
2.8 Keeping existing processes where relevant 22
2.9 Consistent Terminology 22

3 The ASCOS Method 23

3.1 Overall View 23
3.2 Approval Path View 26
3.3 Development View 28

4 Understanding and Handling Change 31

4.1 What is a change? 31
4.2 Broad Types of Change
4.3 Impact of change
4.4 Progressive Understanding of Change
4.5 Staged Changes

5 Safety Argument for Aviation Changes
5.1 Introduction to Safety Arguments
5.2 A Safety Argument for Aviation
5.3 Partitioning the Safety Argument
5.4 The Need for an Argument Architect
5.5 Problems and Pitfalls

6 Applying the ASCOS Method
6.1 How to use this section
6.2 Identify the Need
6.3 Define the Change
6.4 Develop the Approval Path
6.5 Develop Solution
6.6 Obtain Approval
6.7 Operational Service
6.8 Managing Variation and Iteration

7 Roles and Responsibilities
7.1 Roles required within the ASCOS Method
7.2 Participation within the steps of the ASCOS Method

8 Conclusions and Recommendations
8.1 Conclusions
8.2 Assessment
8.3 Recommendations

References

Appendix A Terminology Reference and Abbreviations
Appendix B The Total Aviation System (TAS)
Appendix C Goal Structuring Notation
Appendix D The Use of Safety Arguments in Industry 141

D.1 Development of Standards 141
D.2 Previous Uses in Aviation 141
D.3 Modular Arguments in Aviation and other Industries 142
List of Figures

Figure 1: Relationships between ASCOS work packages __ 13
Figure 2: Overall View of ASCOS Method ___ 24
Figure 3: Approval path using existing approaches __ 26
Figure 4: Novel solution not fully covered by existing approaches _______________________________ 27
Figure 5: New approaches developed to complete the approval path _____________________________ 27
Figure 6: New approaches developed to provide more efficient approval path ______________________ 27
Figure 7: Development of entirely new approval path ___ 27
Figure 8: Different approval paths for different parts of the system ________________________________ 28
Figure 9: Cyclic development of solution and safety argument ____________________________________ 28
Figure 10: Illustration of breakdown of TAS __ 34
Figure 11: Impact of introduction of new non-co-operative surveillance system ____________________ 35
Figure 12: Impact of introduction of automated aircraft recovery system (AARS) ____________________ 36
Figure 13: Impact of introduction of RPAS in non-segregated airspace ______________________________ 37
Figure 14: Generic Safety Argument __ 48
Figure 15: Public View of a Safety Argument Module __ 52
Figure 16: Illustration of linking modules using assurance contracts ______________________________ 55
Figure 17: Example modular safety architecture ___ 58
Figure 18: Modular Safety Argument Architecture for Operation of Electronic Flight Bag (EFB) ______ 58
Figure 19: Overall View of ASCOS Method (copy of Figure 2) ____________________________________ 62
Figure 20: Generic Logical Argument ___ 75
Figure 21: Example of modularisation of argument __ 76
Figure 22: Iterative workflow of argument development __ 90
Figure 23: Generic Logical Argument (repeat of Figure 14) ______________________________________ 91
Figure 24: Decision model for risk posed by change __ 105
Figure 25: EASA Regulations Structure __ 136
Figure 26: Functional breakdown of total aviation system (TAS) _________________________________ 137
Figure 27: Key to basic GSN Symbols __ 139
Figure 28: Key to GSN Symbols for Modular Arguments ___ 140
List of Tables

Table 1: Areas to be considered in impact analysis ... 39
Table 2: Mapping the ASCOS Method to the E-OCVM lifecycle .. 40
Table 3: Illustration of development with stages spanning the system lifecycle 41
Table 4: Gaps which may arise in the approval approach .. 82
Table 5: Evaluation of the development of the argument .. 96
Table 6: Safety consequences of review decision .. 104
Table 7: Participation within the steps of the ASCOS Method .. 116
Table 8: Assessment against principles established for development of new approval method .. 122
Table 9: Terms used with specific meanings in D1.5 .. 132
Table 10: Abbreviations used in this document .. 134
1 Introduction

1.1 The ASCOS Project

1.1.1 Introduction to ASCOS

Fundamental changes in the institutional arrangements for aviation regulation in Europe, the introduction of new technologies and operations, and demands for higher levels of safety performance, suggest the need for the adaptation of existing certification processes. The European Commission (EC) Project ‘Aviation Safety and Certification of new Operations and Systems’ (ASCOS) contributes to the removal of certification obstacles and supports implementation of technologies to reach the EU ACARE Vision 2020 [1] and Flight Path 2050 [2] goals.

ASCOS is delivered by a consortium of organisations involved in the European aviation industry and supported by a wide ranging User Group providing input and review.

1.1.2 Objective for the ASCOS Project

The main objective of the ASCOS project is to develop novel certification process adaptations and supporting safety driven design methods and tools to ease the certification of changes to the aviation system (in particular safety enhancement systems and operations), thereby increasing safety. The project will follow a total system approach (see Appendix B), dealing with all aviation system elements (including the human element) in an integrated way over the complete life-cycle. ASCOS is also tasked with ensuring that any proposed approach is cost-effective and efficient.

1.1.3 Structure of the ASCOS Project

The ASCOS Project was structured into six main work packages:

- WP1: Certification Process – Development of safety based certification process adaptations based on analysis of existing certification and rulemaking process and evaluation of different possible new approaches
- WP2: Continuous Safety Monitoring – Development of a methodology and supporting tools for multi-stakeholder continuous safety monitoring, using a baseline risk picture for all parts of the total aviation system
- WP3: Safety Risk Management – Development of a total aviation system safety assessment methodology, with supporting safety based design systems and tools, for handling of current, emerging and future risks
- WP4: Certification Case Studies – Application of the new certification approach and supporting safety based design systems and tools in the selected example case studies
- WP5: Validation – Validation of the new certification approach and the supporting methods and tools
1.2 ASCOS Certification Process Work Package

The aim of the certification process work package (WP1) is “to develop safety based certification process adaptations based on analysis of existing certification and rulemaking process and evaluation of different possible new approaches.” The ASCOS remit (Description of Work) also calls for the proposed certification adaptations to deliver:

- Efficiency in terms of cost and time
- Ability to analyse and demonstrate acceptable safety for new concepts and technologies
- Ability to analyse and consider the entire aviation system rather than sub-elements in isolation

The initial activities in this work package reviewed current regulations and the degree to which these regulations are implemented within the aviation community, examined accident statistics and trends and
identified potential bottlenecks and shortcomings in the current certification processes. Eight possible options for improvement were identified and evaluated, and four were chosen as a basis for further work:

- Option 2: change between performance-based and compliance based or vice versa
- Option 6: proof of concept approach
- Option 7: enforce existing rules and improve existing processes
- Option 8: cross-domain fertilisation

In addition, the following principles were identified which were used to govern the further development of the ASCOS Method:

- Avoid unnecessary change, recognising the good approaches already in place
- Provide a generic certification framework encompassing the Total Aviation System (TAS)
- Use a common language across all domains based on safety argument concepts (e.g. argument-based as used in OPENCOSS), allowing flexibility to accommodate a variety of approaches across domains
- Provide rigorous management of interfaces, both between domains and between the TAS and its environment, to ensure that all key safety issues are properly addressed and not lost at interfaces
- Allow, within each domain, the new method to evolve from current approaches by
 - keeping the existing approach where no change is required
 - learning lessons from other domains where this gives improvement
 - ensuring that bottlenecks and shortcomings are addressed by the proposed approach
- Promote flexibility within each domain to allow introduction of new technologies or procedures
- Harmonise approaches between domains where this is advantageous or necessary
- Simplify existing processes, where there are:
 - demonstrable benefits and
 - no loss of confidence in the assurance of safety
- Reinforce existing techniques where they are appropriate but not consistently applied
- Provide a mechanism for identification and resolution of further bottlenecks and shortcomings
- Introduce a bridge between the regulations in different domains where needed, in particular between aircraft certification and Air Traffic Management
- Take into account the electronic hardware more explicitly in the proposed approach
- Consider the fact that less experience is gained by the flight crew when more automation is used

The above options and principles were used to develop a proposed certification approach, which is presented in ASCOS deliverable D1.3 [3]. (Assessment of the method against these principles is presented in section 8.2.)

Note: this document supersedes D1.3.
1.3 Objective and Scope of D1.5 (this document)

This document presents a consolidated method for the approval of a change¹ to the Total Aviation System (TAS), herein referred to as the ASCOS Method. The ASCOS Method has been generated by refining the D1.3 approach following feedback from the case studies (WP4) and from validation exercises (WP5). This document represents the final output from the ASCOS project in respect of a consolidated approval² method.

The ASCOS Method, is a framework within which any change to the Total Aviation System (TAS) can be assessed to determine whether it achieves its goals in respect of the safety of the TAS. A change may range from upgrading an obsolete product, through introduction of a new product (including new aircraft) or process, to introduction of a novel operational concept (such as self-separation). In many cases, changes can be demonstrated to be safe using existing processes, and in these cases the framework provides only limited benefits. However, where (as is happening increasingly) changes span multiple domains of the TAS and / or introduce technologies or concepts not envisaged by existing standards, the framework provided by the ASCOS Method allows existing approaches to be integrated with new approaches and thus ensures that the full impact of the changes across the TAS is suitably addressed.

The ASCOS Method also:

- allows existing approaches to remain in use and provides guidance on how to evaluate ways in which these approaches may need to be extended or augmented to address the challenges of a particular change
- provides, in the safety arguments for individual changes, building blocks towards a safety argument for the TAS itself
- complements the work done elsewhere in the ASCOS Project ([5]) in proposing improvements to existing standards.

It is difficult to introduce the flexibility to accommodate innovation and to address changes which span the TAS (the second and third objectives above) without having a negative impact on the cost and efficiency of the approval process, at least in the short term. In addition, the innovations envisaged within aviation may also drive up the scale and complexity of the safety assurance required, having a further negative impact on the efficiency of the approval process, especially given the limited availability of expert safety assurance resources. However, this barrier needs to be overcome in order to realise the significant operational, financial and safety benefits which are available and which outweigh the increased cost of safety assurance. In addition, there was consensus within the ASCOS analysis that cost and efficiency of the assurance will improve in the medium and longer term as the ASCOS Method becomes established within the community.

Although the ASCOS Method has been refined taking feedback from the case studies and validation exercises, it has not yet been used in any actual applications within the industry. The ASCOS Method is presented here as

¹ Section 4 explains what is meant by a change in this context and presents several different ways of considering changes.
² The ASCOS Method can be applied to a wide variety of changes, not just safety enhancement systems or operations.

Section 2.1 explains the distinctions made in this document between approval and certification.
an initial version, ready for application on real systems, but with the expectation that further improvements can be made in the light of experience.

1.4 Structure of this Document

The core of this document is the guidance on application of the ASCOS Method, which is presented in section 6. This section explains how to use the ASCOS Method to determine and follow an approval path for a change, supported by a modular safety argument. It also discusses how to get this safety argument agreed between the stakeholders and then to gather and generate the evidence which is presented together with the safety argument to the approver in order to gain approval for the change to be placed into operational service.

However, before presenting the ASCOS Method in detail, we present material which explains the ideas and techniques which underpin the method: it is important to understand these ideas in order to apply the method effectively.

Section 2 introduces and describes key concepts which underpin the discussion in the rest of this document; it is important that the reader takes time to understand these concepts in order to fully appreciate the presentation throughout the rest of the document.

In section 3 we provide a high level explanation of the ASCOS Method, showing the progress from initial identification of the need for a change, through development and deployment to monitoring in operational service.

We next explain (in section 4) what is meant by a change to the TAS, and cover the features of the change which need to be defined and considered at the very start of the application of the ASCOS Method.

This understanding of change provides the context for section 5, which introduces the concept of a safety argument. We explain how this concept can be used to support applications for approval of changes to the TAS and we present the generic safety argument which forms the framework of the ASCOS Method. We also introduce some tools for partitioning and managing the argument, especially when it becomes complex\(^3\), and consider some of the pitfalls and problems with safety arguments which need to be avoided.

Once all the underpinning concepts have been established, section 6 presents the ASCOS Method in detail. This starts with identification and definition of the change followed by definition of the approval path which will be followed. This is captured as an approval plan which is presented to the approvers for agreement. The ASCOS Method then continues by following the development lifecycle of the change, developing the modules of the safety argument through the lifecycle and generating the evidence required to support the safety argument. Once the development and evidence is complete, the modules of the safety argument and supporting evidence are presented to the approver in order to gain approval for the change, with the aim of introducing the change into operational service.

\(^3\) This complexity is usually inherent in the size and complexity of the TAS and the details which need to be considered when making any change to it.
Roles and responsibilities involved in applying the ASCOS Method are discussed in section 7.

After presenting the ASCOS Method in detail, we present (in section 8) the conclusions we have reached and recommendations for further work to develop and support the ASCOS Method.

Further supporting material is presented in appendices to this document.

The supporting rationale for the ASCOS Method, explaining how it has been developed through the lifetime of the ASCOS programme, and how it has responded to the experience gained from the Case Studies and the Validation Exercises, is presented separately from this document, in the final report for ASCOS WP1 (D1.6 [4]).

1.5 Typographic Convention

In the body of this document we have used italic text for terms with specific meanings: the meanings of these terms are defined in Appendix A.
2 Key Concepts

This section introduces several key concepts and explains how they have been applied within the ASCOS Method.

2.1 Certification and Approval

The term certification is widely used in the aviation industry. It describes the process of demonstrating that a physical item, or an organisation, meets a defined set of requirements and can therefore be issued a certificate to confirm this compliance. Certificates issued include:

- Type Certificates (TC) confirming that a particular aircraft type complies with the relevant certification basis
- Certificates of Airworthiness (CofA) confirming that a particular aircraft conforms to the type design (as defined by the Type Certificate) and is maintained accordingly
- Air Operator Certificates (AOC) confirming that an air operator complies with requirements set out by the national aviation authority for the operation of aircraft for commercial purposes
- ANSP certificates confirming that ANSPs comply with the common requirements for provision of ATM/ANS services

In other areas of aviation, alternative approaches are used, with approval being granted on the basis of a safety case or other document, without explicit issue of a certificate. For example, no certificate is issued either for changes to air traffic service provision by an individual ANSP nor even for products used to support the provision of air traffic services (ATS). However, these products and services are subject to approval by an approver.

Note: an advantage of certification over approval is that a certificate provides a confirmation of compliance which can be more readily reused in further applications of the certified product (or other entity).

The ASCOS Method is applicable to any change introduced to the Total Aviation System (TAS). This means that the ASCOS Method is not restricted to certification. We have therefore deliberately avoided using terms which have a specific meaning within certification to avoid confusion when applying the ASCOS Method to approval. Where appropriate, we have separately mentioned the equivalent certification term to clarify the intention of the method. Note that the ASCOS Method can be used to obtain certification, and this would be especially relevant where the subject of certification goes beyond the existing standards in some way.

2.2 The Total Aviation System

Aviation must be considered as an integrated system where the elements interact in complex ways in order to deliver services including the transport of people and goods from one place to another. The overall system is referred to as the Total Aviation System (TAS) and includes concepts, equipment, people and processes.
Because of the complexity of the Total Aviation System, it is necessary to subdivide it in order to make any reasoning or safety argument manageable. The TAS can be subdivided into a number of domains, allowing each domain to be considered as a separate module of the safety argument, with assurance contracts established to record and manage the interfaces between the domains and with the external environment.

Appendix B provides a further description of the TAS.

2.3 Safety Argument

A safety argument is a connected series of statements, with supporting evidence, used to persuade the reader of the correctness of an overall claim or conclusion. It is not an argument in the sense of a disagreement.

Every time an applicant makes a request for approval, this is based on a safety argument of some form.

In many cases the safety argument is implicit in the procedures followed to gain approval; in other cases an explicit safety argument is presented in the approval submissions, e.g. by constructing a safety case. In some domains the safety argument can consist of both explicit and implicit components, for example the explicit requirements in a Certification Specification are often underpinned by implicit assumptions or context used in deriving those requirements.

The ASCOS Method is based on making an explicit safety argument to demonstrate to the approver (usually the relevant authority) that a particular change to the TAS achieves an acceptable level of safety.

The safety argument is split into modules aligned to the domains of the TAS. Dependencies between modules are captured in assurance contracts. This subdivision facilitates development of the safety argument separately in the individual domains, using approaches familiar within the domain, while the assurance contracts support the activity of ensuring that the safety argument remains consistent across the TAS.

As discussed earlier, the ASCOS Method covers a wider remit than just certification. As a comparison, the safety argument is in some ways analogous to the certification basis agreed with the approver at an early stage within the certification process. The safety argument is developed initially as a basis for agreement between applicant and approver on how approval for a change will be achieved. Evidence to support the safety argument is then gathered and / or produced during the development of the change: this is analogous to the certification evidence generated as required to satisfy the certification basis.

The concept of safety argument is further explained in section 5.

2.4 Making a change to the system

The ASCOS Method applies to changes made to the TAS; a change is any alteration to the TAS, beyond intended operational use or maintenance.

Thus changes range in scope from upgrade of existing equipment items all the way through to introduction of a new operational concept. The ASCOS Method can be applied to any of these changes.
It is important to recognise that a change may have wide ranging impact across the TAS, beyond the immediate part of the TAS which is being changed. A key part of the ASCOS Method is to perform a complete evaluation of the safety impact of the change in order to support the overall claim that the change achieves the agreed acceptable level of safety. The success of this evaluation depends on a thorough understanding of the TAS and the interactions between the parts of the system.

The important concepts relating to changes are further explored in section 4.

2.5 Acceptable Level of Safety

The ASCOS Method focuses on demonstrating that the change delivers and continues to deliver an acceptable level of safety across the TAS. In other words, the level of safety after the change must be acceptable to all competent authorities who are affected by the change. Note: this does not necessarily mean that an improvement in safety must be demonstrated, but there is a general desire to seek ways to reduce risks as far as practical. A change may be necessary to address specific risk escalations but generally it is more likely that the purpose of a change is to improve operational capability.

It is therefore necessary to determine appropriate safety criteria in each domain affected by the change and separately demonstrate that these are met in each case. Such criteria may be either absolute (specific safety objectives and integrity requirements based on apportionment of a safety target) or relative (comparison of the risk prior to the change against the predicted risk following the change, on the premise that the prior risk is tolerable). In the civil aircraft domain, the existence of the target for a catastrophic failure of 10^{-9} per flight hour makes it much easier to apportion absolute targets, whereas the absence of (and difficulty of defining and agreeing) similar absolute targets in other domains means that relative targets are often used.

A change which decreases safety (i.e. increases safety risk) in one domain is usually difficult or impractical to justify, even if it significantly increases safety in other domains⁶. To trade off safety between domains, it would be necessary to provide a robust quantification across all domains which demonstrates a significant overall positive impact on safety. Production of such a robust quantification is made more difficult by the fact that different domains use different types of targets (often with different units), making it difficult to create valid comparisons between domains. A corresponding assessment would be needed in the event of a change with differing impacts on different sovereign states. (A recommendation for further research in this area is made in section 8.3.7.)

In the past, there has been a tendency to consider only the risks resulting from failure of the new system, giving rise to an unnecessarily negative assessment of the impact of the change. Any evaluation of safety must take into account both

- any improvement in safety intended by the change and
- any risks introduced by the change

⁶ It is self-evident that a change which decreases the overall safety of the TAS will not be acceptable.
Further discussion of the concept of acceptable safety is presented in section 6.3.8.

2.6 Criticality of interfaces

Many changes will involve multiple organisations and affect multiple parts of the TAS. Achievement of safety is critically dependent on all these parts interacting correctly with each other and with the environment. However, there is a significant risk of misunderstanding (and therefore incorrect interaction) between different parts of the TAS. This risk is often exacerbated by the differing perspectives and priorities of the different organisations responsible for the parts of the change.

It is therefore critical to ensure that the interfaces between different parts of the system are fully defined in a way which is understood and accepted by (all) stakeholders affected by the interface.

The ASCOS Method supports this with the concepts of:

- modularisation, where the safety argument is subdivided into modules aligned to the subdivisions within the system
- assurance contracts, where the dependencies between the modules are expressed formally and managed as part of the safety argument.

The concepts of modularisation and assurance contracts are discussed further in section 5.3 and section 6.4.

2.7 Performance based vs compliance based approaches

Approaches to approval are often characterised as either performance based or compliance based.

This terminology can be used to distinguish between:

- requirements or targets which are relatively high level and solution independent (performance based)
- requirements which are expressed as a detailed set of constraints often assuming a particular solution

The terminology can also be used to distinguish between:

- the goal based approach often used in ATM
- the certification based approach often used in the aircraft domain

Although there is overlap between these two different ways of viewing the approaches, it is useful to bear both views in mind.

One concern driving the ASCOS Project is that parts of the aviation industry have historically taken a compliance based approach to approval and that this approach stifles innovation because specifications based on historical solutions can be difficult to apply to novel solutions. The performance based approach has been suggested as a way of allowing developers the freedom to innovate and therefore develop optimal solutions.
In practice most approvals use a mixture of approaches – for example, CS25.1309 [8] is goal based whereas a large proportion of this CS is based on compliance with specific prescriptive requirements.

The ASCOS Method allows a goal based approach using high level, solution independent targets to support the development and assessment of innovative solutions, while also allowing more detailed requirements to be used to ensure consistent application of established solutions. Prescriptive requirements (a compliance based approach) are also useful to constrain interfaces or express well established rules, especially where these relate to interfaces with parts of the TAS unaffected by a change.

2.8 Keeping existing processes where relevant

The existing processes in the aviation industry have served very well to achieve and maintain high levels of safety over many years. These processes and standards remain relevant and they are not replaced by the ASCOS Method.

However, the aviation industry is now facing an increasing number of changes which:

- introduce innovative technologies and concepts – challenging compliance-based processes
- affect multiple parts of the TAS – necessitating the application of different sets of processes

The ASCOS Method provides a framework for evaluating the existing processes and then adapting or augmenting them to face these challenges, while retaining the good experience captured by the existing processes where this remains relevant and applicable.

The concept of evaluating and adapting or augmenting existing processes as necessary is covered further in section 6.4.

2.9 Consistent Terminology

Clear communication depends on clear and consistent definitions of the terms used. This presents a particular problem for the ASCOS Method, because some terms have different meanings in different domains.

In this document, a number of specific terms have been used to describe the ASCOS Method and associated concepts: these terms are listed and defined in Appendix A. Where these terms are used in this document, they are shown in italic type.

Where terms already have an accepted and consistent meaning within the industry, they are used with the same meaning within the ASCOS Method.

Where it was necessary to express a meaning different from the accepted meaning within the industry, a new term has been introduced rather than adapt / alter the meaning of an existing term.

Where the meaning of a term is inconsistent within the industry this is highlighted.
3 The ASCOS Method

The ASCOS Method provides a framework for obtaining safety5 approval for any change to the TAS. However, the wide variety of potential changes means that it is not possible to provide a detailed step-by-step description of the process for obtaining approval. Instead, the method should be seen as a framework providing guidance on how to obtain approval for any change to the TAS. The method recognises that the process to be followed will depend upon the type and scope of change being made.

The ASCOS Method can be applied to changes which include an element of certification (e.g. granting of a certificate of airworthiness) and can be used to develop the certification basis and certification plan for such changes. However, the method is not limited to such changes: it can also be used where no certificate will be granted, for example where a new operational concept is being introduced into operational service for the first time. Such changes need planning and approval, but may not be subject to certification.

The framework is constructed around developing an approval path and supporting safety argument for a change. This section explains (at a high level) how to scope, develop and refine the high level safety argument in order to gain approval. The concept of safety argument is discussed in detail in section 5. The detailed description of what should be considered at each stage is provided in section 6.

An overview of the overall ASCOS Method is presented in section 3.1. Next, the concept of an approval path is introduced in section 3.2 and the application of the ASCOS Method is explained further in section 3.3.

Note: roles and responsibilities for the various steps of the process are discussed in section 7.

3.1 Overall View

The ASCOS Method can be viewed as a process starting with the first identification of the need for change, all the way through to the monitoring of the change in operational service, as illustrated in Figure 2.

5 The ASCOS Method has been developed to specifically consider gaining safety approval. It could be used to address non-safety requirements, but the greatest benefits of the approach are achieved where a detailed assurance argument needs to be built spanning multiple domains, which is typically what is needed to demonstrate that safety requirements are met.
The steps are as follows:

1. **Identify the need**: The needs for change to the TAS can be understood in the following broad groups:

 a. business need

 b. a specific need to improve safety, in response to monitoring current performance

 c. external changes

 In each case, the first step is to identify the (potential) change and identify the change leader.

2. **Develop change definition**: Before deciding how to gain approval for the change, and who needs to be involved, the change must be defined sufficiently to understand:

 a. what is being changed

 b. who is responsible for making the change (this may include multiple organisations, but should usually be led by a single organisation or individual – the change leader)
In practice, definition of the change continues throughout the process; however it is critical to have a well-defined baseline definition of the change, including its environment, at the outset, allowing any later variations to be properly evaluated and incorporated. The definition and evaluation of changes is discussed further in section 4.

3. **Develop approval path**: The approval path depends on the details of the change. For some changes, it will be sufficient to follow existing approval approaches with little or no variation; for other changes, a new approval path must be defined because none currently exists, or because the current path is too costly (either in resource or time). The approval path is supported by a safety argument which justifies the claim that the change will meet the acceptable level of safety. The safety argument is divided into modules aligned to the domains of the TAS. The development of an approval path is discussed further in section 3.2. The approval path is documented in an approval plan and agreed between applicant(s) and the relevant approver(s) before development commences.

4. **Develop solution**: The next step is to develop the solution (i.e. how the change defined in step 2 will be implemented) and gather the evidence needed to support application for approval. Development occurs at two main levels: (a) at the level of the TAS; and (b) within the individual domains. This development is iterative until the development is complete and is explained further in section 3.3.

5. **Obtain approval**: At completion of development, the modules of the safety argument (together with supporting evidence) are submitted for approval in accordance with the plan which was previously agreed with the approver(s) involved. (The approver(s) will grant approval (only) when they are convinced that the safety argument and supporting evidence demonstrate that the acceptable level of safety has been achieved.)

6. **Operational service**: Once approval has been gained, the applicant informs the relevant stakeholders of the details and timescales of the change, and then brings the change into operational service. Following entry into service, the operation is then monitored in accordance with the relevant organisation(s)’ SMS to confirm that the acceptable level of safety is achieved and maintained. Where the level achieved is not acceptable, the change may be withdrawn from operational service; otherwise further changes are designed and implemented to rectify the deficiency.

6 Although the detailed development of the solution takes place later, the concept solution must be defined in order to identify which regulations will apply and which parts of the system will be affected.

7 Environment is here taken to include operational and regulatory environment as well as the physical environment.
Although the ASCOS Method is presented as a linear path, iteration is required for most changes. This could arise either because the requirements change, or because development has revealed that the original approach needs to be adapted. It is also relevant to note that where the change affects the approval path, the approval plan should be revised and re-presented to the approver at the earliest opportunity to confirm that the proposed approval path remains acceptable. If this is not done, the applicant risks taking a path which will not be acceptable to the approver, leading to rework late in the process, which may be both expensive and time consuming.

3.2 Approval Path View

The overall intention of the ASCOS Method is to gain approval for a change to the Total Aviation System (TAS). Approval is granted by the approver on the basis of a safety argument (supported by evidence) justifying that the change will be acceptably safe. Although the concept of safety argument may be unfamiliar, it is already implicit in current approaches to gaining approval (or certification). The concept of safety argument is explored in more detail in section 5. (An illustration of how elements of a safety argument can be implicit is given in section 5.1.3.)

The ASCOS Method can be viewed as establishing an approval path which, where possible, is based on existing approaches (which provide the evidence required by the current, often implicit, safety arguments).

For some changes, the approval path can be based entirely on existing approaches and appealing to the existing (possibly implicit) safety argument. This is a valid approach where:

1. the existing approaches are fully applicable to the change being made;
2. the existing approaches fully consider all the impacts of the change; and
3. there is no (safety or efficiency) benefit to be gained from improving the approach.

An example of such a change might be the introduction of an upgraded equipment item on board an aircraft, where the new item has the same fit, form and function as the existing item. This could be visualised as a straight, already-established path, as shown in Figure 3.

![Figure 3: Approval path using existing approaches](image-url)

For other changes, established approaches will provide the majority of the evidence needed, but with some gaps. For example, the change may introduce a novel solution which is not covered by the existing approaches, as shown in Figure 4.
In this case, the approval path may be established by developing approaches which cover the novel solution. These approaches must be developed in a way which takes account of the interface between the novel parts of the solution and the rest of the solution, to make sure that these are fully considered and integrated. The development of these additional approaches provides the missing part of the approval path for the solution. This must then be supported by a safety argument which demonstrates that the combination of existing and new approaches fully addresses the change and that the resultant solution achieves the acceptable level of safety.

In some cases, the existing approaches may be sufficient to provide an approval path, but a more efficient (and therefore cheaper) approach may be possible. The development of additional approaches improves efficiency, as illustrated in Figure 6. As before, these new approaches must be supported by a safety argument which demonstrates that the combination of existing and new approaches fully addresses the change and that the resultant solution achieves the acceptable level of safety.

In other cases, there may not be any existing approaches, and the approval may need to be developed entirely from first principles, as illustrated in Figure 7.

Complex or large changes may involve a combination of the above, such that some parts may be approved straightforwardly whereas others may require additional approaches to be developed and still others may allow for a more efficient approach, as illustrated in Figure 8. Note that in these cases it is important to review the approaches against each other to ensure that the overall approach remains consistent in achieving the overall objective of a safe change to the TAS.
In each case (with the possible exception of where the path exactly follows the existing approaches), a safety argument is needed to demonstrate that the change achieves the acceptable level of safety. However, the scope of the safety argument required depends on the degree of novelty involved and on the degree to which the change spans multiple domains of the TAS. (Safety arguments are addressed in more detail in section 5.)

Note that development of changes is a complex process. It is rare (or even unknown) for the full definition, impact and scope of a change to be understood at the outset. The approval path should be re-evaluated regularly to check whether the remaining approval path is (a) complete and (b) efficient.

3.3 Development View

The detailed development of the solution and safety argument proceeds at two levels, and in a cyclic manner, as illustrated in Figure 9. Development and evaluation of both solution and safety argument occurs in parallel in the steps shown, as further described below. The arrows show progression through steps of the process.
The initial development is at the TAS level. For some wide ranging changes, this will involve significant systems engineering and analysis to define and assess the change at this level. Even for changes where only a small adaptation of the existing approach is needed, a review at the TAS level is needed to ensure that the overall impact on the TAS has been fully considered. At this stage the safety argument is also developed at the TAS level.

Development at the TAS level is followed by modularisation of the change into subparts aligned to individual domains. This modularisation includes defining the requirements to be satisfied by the individual subparts, as well as defining the assurance contracts between the subparts.

This modularisation is followed by development within individual domains. This domain level development may proceed according to the existing approaches within the domain, depending on the choice of approval path (see section 3.2). Alternatively, new approaches and arguments may be needed within the domain. These may be needed to support the development of novel solutions; they may also be needed to ensure that the interfaces with other domains are fully addressed within the development.

For changes where the major impact is within a single domain, the detailed development may be limited to that one domain, supported by establishing the impact which the change has on other domains and ensuring that this is fully captured in assurance contracts.

During development, evaluation is also necessary to check that the solution and safety argument remain consistent and complete at a number of levels:

- Does the solution at the TAS level still meet the requirements of its stakeholders?
- Does the solution being developed in the individual domains meet the requirements imposed at the TAS level?
- Does the evidence being produced continue to support the safety argument?
- Does the solution satisfy the assurance contracts between the domains?

(From an approval perspective, the approver will be interested only where the answers to these questions have an impact on the approval – i.e. on the safety argument and / or the supporting evidence. In this context the approver is one of the stakeholders in the development of the change.)

If the answer to any of these questions is “No”, then it is necessary to go back and revise the solution and / or the safety argument to ensure that the overall development remains on course.

Large programmes are often divided into a number of lifecycle stages, with “stage gates” between stages. (E.g. concept design, detailed design, realisation, test and deployment.) The programme must be able to demonstrate that certain criteria are met before it can proceed to the next stage of the lifecycle. The stage
gates may be an appropriate point at which to evaluate the state of the development and the safety argument and to take corrective action as necessary.

System development, especially on large programmes, is often subject to variation during the lifecycle, and this variation can come from any number of sources. Examples of this include:

- introduction of a new aircraft type, leading to the need to accommodate this aircraft in the design of the aerodrome
- discovery of an incorrect assumption made during concept development (e.g. wake separation requirements) leading to alteration of the concept

It is recognition and successful management of these variations which is the biggest challenge in the development of changes; it is here where the roles of the change leader and argument architect become crucial to ensure that the change continues to meet its requirements and that the safety argument continues to support the change.

This development and iteration continues until the development is complete and the safety argument is fully developed, consistent with the development and supported by evidence.
4 Understanding and Handling Change

The ASCOS Method is applied to obtain approval for a change to (a component) of the TAS. Before considering the ASCOS Method, it is important to understand the change itself.

This section explains what is meant by a change and looks at the relevant features of the change which need to be considered before deciding how (and whether) to apply the ASCOS Method – in particular it is important to understand the impact of the change as fully as possible. This section also looks at the lifecycle of a change and its effect on the application of the ASCOS Method.

If this section is read with a specific change in mind, it should allow the reader:

- to decide whether the change is one for which the ASCOS Method should be considered
- to form an initial view of the scale of effort required to apply the ASCOS Method
- to make a preliminary assessment of the impact of the change
- to identify the stages involved in the change

4.1 What is a change?

A change is any alteration to the TAS, beyond intended operational use or maintenance. Such changes need some form of approval before they are implemented. Usually the approval will be given by a competent authority (e.g. EASA or the relevant national authority) but the ASCOS Method could also be used where the organisation making the change has the authority to grant its own approval – this is why the term approver is used to encompass the wider concept.

This definition encompasses a wide range of changes, including:

a. introduction of new or replacement equipment items
b. introduction of a new concept, such as self-assured separation
c. changes of airspace structure (e.g. new routes, or change in transition altitudes)
d. granting permission to a new organisation (e.g. air operator) to operate (or varying their scope of operation)
e. changes to regulations or standards

This list is not exhaustive – the ASCOS Method can be applied to any change which needs approval before it enters service. (However, it should be noted that the degree of effort required will vary significantly with the type of change.)
It is important to note that for any change to the Total Aviation System, a safety argument is needed. In particular, where a trial operation is introduced (perhaps as part of a proof of concept), it is still necessary to demonstrate that the trial achieves the relevant acceptable level of safety\(^9\). Where equipment or procedures are not fully proven, this safety argument may be based on mitigations which are in place to limit the scope for harm in the event of failure – for example flying in segregated airspace, or flying without passengers on board.

4.2 Broad Types of Change

Changes can be placed into the following types:

1. replacement of equipment item with a similar item, with form, fit and function unchanged
2. change within a single domain, although it may have an impact on other domains
3. change across multiple domains

Examples of types 2 and 3 are given in section 4.3.

In practice, a change may not fall neatly into a single category: the framework described in this document should be used as a guide and adapted as appropriate to the specific change.

The level of effort needed to apply the ASCOS Method will usually vary depending on the type of change. For type 1 changes, it will usually be possible to gain approval through applying existing approaches (for instance by showing compliance with the corresponding ETSO\(^{10}\)). For type 2 changes, more effort will be required to develop the safety argument for the change, although the approaches normally used within the domain are likely to form a significant part of the safety argument. Where a significant amount of novelty is involved, it is likely that significant new approaches and standards will need to be developed to cater for this novelty. Type 3 changes are likely to involve the largest amount of effort to understand the impact of the change, including the interactions between domains, and to develop the evidence to demonstrate the safety of the change accordingly. Again, the development of new approaches and standards is likely to be required.

4.3 Impact of change

When a change is made to some parts of the TAS, there may also be effects on unchanged parts of the TAS. Some of these effects will be intended (e.g. introduction of an autopilot reduces the flight crew’s workload); in addition there are often unintended effects (e.g. the increase of automation on the flight deck reduces the crew’s level of familiarity with some operations). The collection of these intended and unintended effects is termed the impact of the change.

\(^9\) In other words, the trial does not have an unacceptable negative impact on the safety of the (operational) TAS.

\(^{10}\) An European Technical Standard Order (ETSO) is a way to demonstrate that a part complies with a minimum performance standard.
Some changes have minimal impact on the rest of the TAS (e.g. introduction of a replacement equipment item which has the same form, fit and function as the existing item); other changes have a much wider impact (e.g. introduction of a new aircraft type).

This variety of impact is roughly illustrated in the following figures. In each case, the type of change (from the list in section 4.2) is also indicated.

Note: these figures are roughly aligned to the EASA Regulations Structure (see Appendix B), although this has been simplified for the purpose of the illustration here.

- Figure 10 depicts a much simplified picture of the TAS.
- Figure 11 (type 1) depicts the potential areas of the TAS which would be affected by a simple change to the non-co-operative surveillance systems at an airport.
- Figure 12 (type 2) depicts the potential areas of the TAS which would be affected by an Automated Aircraft Recovery System (AARS)\(^\text{11}\) which could be engaged by the pilot to return the aircraft to stable flight to allow the pilot opportunity to regain situational awareness.
- Figure 13 (type 3) depicts the potential areas of the TAS which would be affected by introduction of Remotely Piloted Aircraft Systems (RPAS) into unsegregated operation in civil airspace.

\(^{11}\) One of the ASCOS case studies considered such a development and illustrations from this are used at various points within this document.
Figure 10: Illustration of breakdown of TAS
Figure 11: Impact of introduction of new non-co-operative surveillance system
Figure 12: Impact of introduction of automated aircraft recovery system (AARS)
Figure 13: Impact of introduction of RPAS in non-segregated airspace
It is important to undertake an early evaluation of the impact of a change, in order to identify the stakeholders who need to be involved, the regulations which need to be complied with and the approvers which will approve the change. As discussed below (see section 4.4), the understanding of the change develops through the lifecycle. The initial impact assessment will necessarily be at a high level, with detail added as the understanding of the change develops.

Impact analysis must consider the whole TAS and all service configurations and modes of operation, including those associated with fallback or degraded modes. It must consider any intended safety improvement due to the change as well any safety effects due to failure of the introduced systems. Explicit consideration of the safety benefits arising from the change is a crucial step which can be overlooked in a purely failure-based approach. The need for this part of the safety argument (sometimes termed the “success approach” [9]) arises because there are inherent hazards within the TAS (e.g. conflict between aircraft trajectories or controlled flight towards terrain) which systems such as ATM systems are introduced to prevent. It is necessary to confirm that, where a change is intended to deliver a safety benefit (i.e. reduce the risk of inherent hazards), it does indeed deliver a sufficient safety benefit. Too much focus on the analysis of failures within the TAS may divert attention from the crucial question of whether the design (when functioning correctly) provides sufficient mitigation of these inherent hazards.

A thorough impact analysis is necessary to ensure that all possible effects on safety, whether intended or unintended, are identified and evaluated. If the analysis is incomplete, areas affected by the change may be missed, which may result in an unacceptable (and not initially detected) degradation of safety.

Table 1 lists areas which should be included in the impact analysis along with some examples from the case study examining introduction of an RPAS. Note: this table should be used only as a guide, and is not intended to constrain the impact analysis.

<table>
<thead>
<tr>
<th>Area to consider</th>
<th>Examples (mostly from introduction of an RPAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended effects of the change throughout the TAS (including operational and maintenance changes)</td>
<td>Need to consider effect on ATM, maintenance, crew licensing, aerodrome requirements, not just impact on airworthiness requirements</td>
</tr>
<tr>
<td>Unintended effects of the change</td>
<td>Lack of availability of spares through conversion of old aircraft to RPAS rather than decommissioning</td>
</tr>
<tr>
<td>Changes in failure scenarios (including new / changed failure modes and failure rates, potentially new common cause failures)</td>
<td>New communications links whose failure will have a significant effect on system safety</td>
</tr>
<tr>
<td>Changes in the effect of failures (including changes to failure detection and correction, failure propagation, responses to failures)</td>
<td>Removal of personnel from flight deck removes failure detection by human senses (e.g. smell, temperature sensation, visual of weather conditions); alternative means of detection are therefore needed</td>
</tr>
</tbody>
</table>

12 In a certification this would be equivalent to agreeing the certification basis.
<table>
<thead>
<tr>
<th>Area to consider</th>
<th>Examples (mostly from introduction of an RPAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect at interfaces between parts of the system</td>
<td>Interface between pilot and control surfaces subject to increased processing and data transmission, introducing potential delays and failure modes</td>
</tr>
<tr>
<td>Effect on and of the environment(^{13})</td>
<td>Environmental impact of additional emergency landing areas for RPAS; RPAS systems will have different capabilities in respect of dealing with ranges of environmental conditions</td>
</tr>
<tr>
<td>Proximity of components or environmental elements</td>
<td>Not specifically from RPAS, but where new components are introduced, what physical (e.g. heating) effect can they have on the components around them.</td>
</tr>
<tr>
<td>Proximity of components or environmental elements</td>
<td>De-skilling of pilots through increased automation</td>
</tr>
<tr>
<td>Operation outside critical thresholds</td>
<td>Introduction of additional communications channel (ground to ground comms between ATCO and (ground-based) pilot)</td>
</tr>
<tr>
<td>Changes to stress, capacity or loading</td>
<td>Aircraft to ATM communications have built in confirmation loops, which may be affected by communications delays where the pilot is remote from the aircraft</td>
</tr>
</tbody>
</table>

\(^{13}\) Here “environment” is meant in its widest sense, including items relied on by the crew – such as visual reference points – as well as weather, pollution, noise, etc.

Table 1: Areas to be considered in impact analysis

Impact analysis is primarily a search for connections of any type between the changed parts and other parts of the TAS, either via a functional interface or a shared resource. These connected parts are then analysed to determine whether their behaviour is affected by the change. Analysis also determines whether the conditions experienced by the connected parts have changed, requiring an extension to those parts’ specifications. (This may in turn lead to identification of additional approval / certification work for these affected parts.) When the behaviour of an impacted part is changed, then the impact analysis must extend further to identify whether further parts are affected in turn.

At this stage, a review of existing models of the affected parts of the TAS can assist in evaluating the impact of a change. This includes the models and tools developed by ASCOS for safety risk management (as described in the WP3 Final Report [5]). The models can be used as part of the “identify the need” step (see section 6.2) to identify (from the performance indicators) where improvements are needed. They can also be used to understand how a change in one area might propagate through the TAS. However, it is important to fully understand the scope of any model used: a model can only support evaluation of impact in areas which are covered by the model.

The safety argument for a change must include a complete evaluation of all aspects of the change which may affect safety in order to determine whether the change delivers the acceptable level of safety.
4.4 Progressive Understanding of Change

Changes follow a (system engineering) lifecycle from initial proposal through introduction into operation, culminating in monitoring of the change while in operation. Approval activities follow a different lifecycle, although a rough mapping can be made. This is illustrated in Table 2 which shows the mapping between the engineering lifecycle presented in the European Operational Concept Validation Methodology (E-OCVM) [6] and the approval lifecycle proposed by the ASCOS Method. It should be noted that approval activities tend to be focused at particular stages within the engineering lifecycle.

<table>
<thead>
<tr>
<th>E-OCVM Lifecycle Stage</th>
<th>ASCOS Method Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0 (System Needs)</td>
<td>Identify the need</td>
</tr>
<tr>
<td>V1 (Scope)</td>
<td>Develop change definition</td>
</tr>
<tr>
<td>V2 (Feasibility)</td>
<td>Develop approval path</td>
</tr>
<tr>
<td>V3 (Preindustrial development and integration)</td>
<td>Develop solution</td>
</tr>
<tr>
<td>V4 (Industrialisation)</td>
<td>Obtain approval</td>
</tr>
<tr>
<td>No direct mapping</td>
<td>Operational service</td>
</tr>
<tr>
<td>V5 (Deployment)</td>
<td></td>
</tr>
<tr>
<td>V6 (Operations)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Mapping the ASCOS Method to the E-OCVM lifecycle

When a change is first proposed (V0, V1), only a limited amount of information is available. For example, a proposal to introduce a new surveillance system (for use by air traffic controllers) may initially be defined as a performance requirement for monitoring position and speed of aircraft, without any constraints on the technology used. The models and tools developed by ASCOS for continuous safety monitoring (as described in the WP2 Final Report [7]) and other similar tools can be used here to identify and evaluate the need for a change to the system. However, it is important to fully understand the scope of any model used: a model can only support evaluation of impact in areas which are covered by the model.

It is important to make an early assessment of the impact of a change. At this stage it may only be possible to identify the main areas affected by the change and the main impact on those areas. Evaluation and consultation with the approver will indicate the approval path to be taken by the change and the degree of approval effort required: a change with significant impact on multiple domains will need a more thorough safety argument than a change whose impact is limited to a single domain. However, even at this stage, the change may be found to be non-viable and the development may be stopped even before a start is made to building the safety argument required by the ASCOS Method.

As the change becomes further developed (V2), there will be a clearer understanding of the parties which will be affected and of the impact of the change. At this stage the approval path (see section 3) can be established along with the outline safety argument and approval plan. It is still possible that the negative impact on safety
is revealed to be too great, such that the change is judged to be not viable and the development may be stopped.

The change will then go through stages of detailed design and implementation (V3, V4, V5), with corresponding assessment activities in parallel. During these stages the safety argument may need to be updated, with knock-on effect on the approval plan (see section 6.4.5).

As discussed in section 3, it is quite likely that the definition of the change will itself be altered during the lifecycle of the change. It is critical that these alterations are properly managed, through a change management and impact assessment process, so that the development and assessment remain consistent with the definition of the change.

4.5 Staged Changes

Complex changes are often developed in multiple stages. There are two ways in which this can occur:

1. Stages aligned to different parts of the system lifecycle
2. Stages aligned to different operational states of the final system

In each case, it is important to understand the overall nature of the change and the impact which this will have on the application for approval, as illustrated in the following sections.

4.5.1 Stages reflecting different parts of the system lifecycle

Development of a new aircraft concept is a complex process with different parties involved at different stages. This can be considered in multiple stages as illustrated in Table 3, taking the example of the development and introduction of an RPAS operating in unsegregated airspace.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Change Leader</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Development of requirements for an RPAS operating in unsegregated airspace; may be undertaken by a pan industry consortium of manufacturers and operators, all of whom are jointly interested in ensuring that the requirements meet their needs</td>
<td>TAS Engineering and Safety Group (TESG) – see section 7.1.5</td>
<td>Approved requirements</td>
</tr>
<tr>
<td>2</td>
<td>Implementation of the requirements to generate a specific RPAS product; the details of the development would be commercially confidential and would not be shared between manufacturers, and lead to a product Type Certificate</td>
<td>Manufacturer (perhaps multiple manufacturers in parallel)</td>
<td>Product Type Certificate (TC)</td>
</tr>
<tr>
<td>3</td>
<td>Introduction of the specific RPAS product into service in a specific region</td>
<td>Air Operator</td>
<td>(Updated) Air Operator Certificate (AOC)</td>
</tr>
</tbody>
</table>

Table 3: Illustration of development with stages spanning the system lifecycle
This approach is already common practice within the industry.

Note that there may be different change leaders at different stages of the lifecycle. (At each stage the change leader will be supported by other organisations.) Each change leader will have slightly different goals, albeit within the overall context of introducing the system to service.

It is possible to apply the ASCOS Method to each of the separate stages in this case, but the details of the safety argument will be significantly different, reflecting the stage in the lifecycle. The approval required in each case will also be different: in fact, for stage 1 there may be no provision for formal approval in the regulations – however, some form of approval of the requirements generated would be expected by the industry before they develop products to meet the requirements.

4.5.2 Stages reflecting different operational states of the final system

Deployment of a new solution may go through a number of interim operational states. For example, when introducing a new arrivals concept at an airport, which involves reducing separation between aircraft, the airspace changes (sectors and routes) may be introduced first and proved in operation, before actually reducing separation. Alternatively, a new air traffic management solution may be deployed progressively as the existing equipment reaches the end of its design life, or it may be deployed to multiple areas, constrained by the budget of the ANSP.

Each operational state will need to be addressed separately in the safety argument to demonstrate that the operation in that state will be acceptably safe. As well as justifying the safety of the state itself, the transitions between states must be assessed to ensure that each transition can be completed safely. This transition assessment is needed even when there is a single transition (from initial state to final state), but becomes more involved and critical where multiple changes are made in a relatively short period of time.

In this case, it is likely that the same organisation will be responsible for each part of the safety argument.
5 Safety Argument for Aviation Changes

5.1 Introduction to Safety Arguments

The term safety argument is used to refer to a logical argument which makes a claim that a system achieves an acceptable level of safety.

A logical argument is a connected series of statements, with supporting evidence, used to persuade the reader of the correctness of an overall claim or conclusion. It is not an argument in the sense of a disagreement. A logical argument attempts to supply strong evidence, rather than absolute proof, of the truth of the claim being made. In the case of a safety argument, the approver will usually require very high confidence to be established in the claim being made, and hence the safety argument must be rigorously constructed and reviewed. Logical arguments are susceptible to a number of pitfalls which can undermine the argument: more details of possible pitfalls are discussed in section 5.5.

Safety arguments have been accepted across a range of industries for over 15 years as a means of enabling clear, concise and traceable arguments for safety assurance to be presented to regulators. A brief summary of some uses of safety argument in this way is presented in Appendix D.

5.1.1 What is a Safety Argument?

A safety argument consists of:

- A set of claims that express why a system or service (made up of equipment, people and procedures) is considered to be acceptable
- Supporting information (strategy, context, assumptions and justifications) which explains the reasoning behind the argument
- Supporting evidence to substantiate the claims at the lowest level in the argument (i.e. those which are not further decomposed within the argument). Evidence can be categorised as
 - direct evidence - this is evidence, relating directly to observable properties of an output or product, that a particular objective has been achieved
 - backing evidence – this is evidence that there is sufficient confidence that the direct evidence can be relied upon; backing evidence relates to properties of the processes by which direct evidence was obtained: e.g. tools and techniques, human resources applied were qualified/competent and properly deployed
- Caveats (limitations, constraints) which constrain or limit the interpretation and further application of the claims made
- Dependencies on other components outside the bounds of the change under consideration

An argument is presented as a hierarchy below a top level claim, usually of the form “System X is acceptably safe.” The top level claim is decomposed into a hierarchy of sub-claims: at each level of the argument, satisfaction of a claim is demonstrated by the satisfaction of all the sub-claims into which it is decomposed.
The supporting information \textit{(strategies, context, justifications and assumptions)} is critical as it explains the \textit{safety argument} and makes clear any parameters within which the \textit{safety argument} was constructed. This is especially important when reviewing the \textit{safety argument}, or attempting to re-apply an existing \textit{safety argument} to another change.

\textit{Safety arguments} generally take one of three forms:

1. process based \textit{(the applicant demonstrates that they have followed a particular process)}
2. product based \textit{(the applicant demonstrates that the product meets a specification)}
3. objective driven \textit{(the applicant demonstrates that particular objectives or performance criteria are met – e.g. safety targets)}

5.1.2 \textbf{Why do we need a safety argument?}

Construction of a \textit{safety argument} requires rigorous and detailed examination of the \textit{claims} being made and the evidence available to support them. The exercise of constructing the \textit{safety argument} therefore requires the organisations seeking to make the \textit{change} \textit{(the change leader and the applicant)} to think carefully through the claim being made. This attention helps to improve the validity of the \textit{safety argument} and provide confidence in its conclusions, before it is submitted for \textit{approval}.

A further purpose of the \textit{safety argument} is to demonstrate that a proposed \textit{change} will be acceptable and to communicate the reasons for that belief to interested stakeholders, in particular the \textit{approver}.

The \textit{safety argument} demonstrates that the proposed \textit{change} will achieve an \textit{acceptable level of safety}: the \textit{safety argument} covers all modes of operation, including fall back; it also includes the, transitional stage(s) required to implement the \textit{change}.

All \textit{approvals} are based on a \textit{safety argument} of some form. This may be an \textit{implicit} argument effectively defined by procedures to be followed to gain \textit{approval}, or it may be an \textit{explicit} argument presented in \textit{approval} submissions, e.g. by constructing a safety case. In some \textit{domains} the \textit{safety argument} can consist of explicit and implicit components, for example the explicit requirements in a Certification Specification and the often implicit assumptions or context used in deriving those requirements.

A well-structured explicit \textit{safety argument} provides the mechanism to argue that a \textit{change} can and will be implemented, in a compelling and comprehensible way. A complete and correct \textit{safety argument} can ease the \textit{approval path} as it should provide clear pointers to evidence in support of a top level \textit{claim}. A complete \textit{safety argument} is one that covers all relevant aspects of the \textit{TAS} to a sufficient and necessary level of detail. A correct \textit{safety argument} is one that:

\begin{itemize}
 \item accurately reflects the design
 \item is consistent
 \item is both logical and understandable
 \item is supported by empirical evidence, proof or reason
\end{itemize}
Even within these constraints, different types of safety argument may be constructed. It would be possible to create a separate safety argument for each requirement within a specification. However, the safety argument envisaged by the ASCOS Method is more of the following form:

- The relevant standards are sufficient to assure that the acceptable level of safety is achieved.
- The change has complied with these standards.
- The context of implementation of the change matches the context envisaged by the standards applied.
- Therefore, the change is adequately safe.
- The safety argument is accepted by the relevant approver.
- Thus, by implication, the change achieves the acceptable level of safety.

A safety argument of this latter form is much smaller (and therefore easier to construct and understand) than one individually justifying compliance with each requirement.

5.1.3 Explicitly Stated Arguments and Assumptions

An advantage of explicit arguments is that they can help to avoid some of the pitfalls faced by implicit arguments. One particular example is where a specification is based on assumptions about the context in which equipment will be used or about the technology which will be used to deliver to the specification. If these assumptions are invalid, equipment which meets the specification may still prove to be unsafe, because the overall safety argument is fallacious.

An example is the changing role of an aircraft’s Flight Management System (FMS) with the introduction of advanced functions such as advanced RNP: the safety argument for introduction of such a function needs to consider whether the existing FMS specification is sufficient to safely support the new function or whether adaptations are required which fall outside the existing specification.

Another example comes from the adoption of composite materials in airframes. Certification Specifications (CSs) specify the requirements which must be met in order to obtain a Type Certificate for an aircraft: they therefore form part of a compliance based approval approach. The parts of the CSs which relate to physical structure are generally not specific to a particular type of material. However, as metallic structures have been the norm in airframes for many years, and because the CSs have been developed over this same timeframe, the CSs often (implicitly) assume that the airframe will be constructed largely or entirely in metal. Some of these embedded assumptions are easily apparent, e.g. references to corrosion. However, others are less obvious. For example, the mechanisms for growth of cracks in metal structures mean that some cracks can be tolerated, as long as they are detected and monitored. However, damage growth in composites can be rapid, unpredictable and not readily detectable, meaning that a very different approach is needed for composites compared with metal structures.

This particular issue has been recognised by EASA and addressed in guidance information [10] and the relevant CSs (e.g. CS-25 [8]) have been subsequently updated to take the use of composites into account. This is an
example of where review of context and assumptions has led to revision of the specification on which approval (in this case certification) is based.

This example illustrates the importance of context and assumptions in developing an approval path and subsequently the safety argument. Where the approval path is based on any existing safety arguments or evidence, the relevance of these safety arguments to the change under consideration needs to be carefully evaluated. In this example, attempt to make a safety argument for a composite airframe based on an older version of the relevant CS, should have identified that the CS (implicitly) assumed metallic structures. This should then have led to a review of the CS to identify how the move to composites affected the requirements. The organisation driving the change would then need to decide whether to develop a specific safety argument to address the elements of the development not (fully) covered by the CS or to support / request redevelopment of the CS to support the use of composite materials.

5.1.4 How to present a Safety Argument

A safety argument may be presented in a variety of implicit or explicit forms often purely textual or compliance based.

Explicit use of a graphical notation with a formal syntax helps both the author and the reviewer by encouraging thorough consideration of the logical structure and justification of the safety argument. It thus allows it to be more readily understood and thus challenged where it is incomplete, incorrect or invalid. This is an application of the English saying “A picture is worth a thousand words.”

The Goal Structuring Notation (GSN) is an example of a graphical safety argument notation and was developed for this specific purpose. It has been successfully applied in many safety critical domains, including avionics, aviation, nuclear and rail. GSN is now defined in a published standard [12] and supported by multiple research papers and presentations. It is also described in the EUROCONTROL Safety Case Development Manual (SCDM) [13] and in a UK CAA guidance document on production of safety cases [14], although these documents do not specifically recommend any particular graphical approach.

GSN is chosen over other graphical notations for presentation in the ASCOS Method as

- it is formally defined in a community standard
- it is flexible in its use, with a developed notation for modularisation of arguments
- there is tool support available for verification of arguments and the modular safety argument notations
- it supports the definition of template arguments that can be applied to similar systems or services
- it is already used within the civil aviation industry
• it is covered in industry publications as described above

A summary of the GSN notation is presented in Appendix C.

5.2 A Safety Argument for Aviation

5.2.1 Why This Safety Argument?

The ASCOS Method has adopted a generic safety argument which is presented in section 5.2.2. There is no single “correct” safety argument. Other arguments are possible, but the safety argument presented here has been used successfully in aviation applications (see Appendix D) and has been refined through that use.

The safety argument presented here is aimed towards extensive, multi-domain changes to the TAS, where the degree of innovation requires significant adaptation to existing approval paths.

It should be noted that, in the ASCOS Method, the purpose of the safety argument is to support the chosen approval path. The concept of the approval path is explained in section 3. A change which was simpler, or which was more capable of being approved using existing approaches, would be able to use a much simpler safety argument than that presented in section 5.2.2. For example, where the change largely adopts an existing approval path, with a minor adaptation, it would only be necessary to make a safety argument for that adaptation to the approval path (as illustrated in Figure 5).

Whatever safety argument structure is used, it is critical to ensure that the safety argument addresses the whole system lifecycle: it is not sufficient just to demonstrate that a particular design has been implemented, it is also necessary to demonstrate that the design sufficiently addresses the intent of the change, and that the change is monitored in operational service to confirm that the change to the TAS does indeed achieve the acceptable level of safety.

5.2.2 A Generic Safety Argument

Figure 14 presents a generic safety argument for use within the ASCOS Method. This safety argument is based on a generic argument which is already widely used within ATM. Originally developed within the EUROCONTROL Safety Case Development Manual (SCDM) [13] and subsequently extended and enhanced by the SESAR research programme (see [15]) this generic safety argument addresses all stages of the development lifecycle, from concept through to maintenance in continued operation.

This safety argument is intended as a template to be adapted according to the needs of the change, as discussed further in section 6; the argument here is biased towards the needs of a substantial multi-domain change where significant changes to existing approval paths need to be justified.
The argument starts with the top level claim (Claim 0: “Change X to the TAS is acceptably safe”). Before we start to decompose the claim we need to define the context of the change, which usually includes:

- precise definition of the change being made, including the reason(s) for making the change – where this is replacement of an existing system, this should include any changes in functionality between old and new systems (C 002)
- definition of the term “acceptably safe”, through definition of safety acceptance criteria (C 001)
- assumptions about the environment (including the surrounding system) within which the change is being made
- applicable regulations
- identification of novel features or functions which may be outside the current understanding of those within the system

Note: only the first two items are shown in this example, but all of these types of context would usually appear at some level in the safety argument.

Context should be defined at the highest level at which it is relevant; this can result in context being refined as the safety argument is decomposed.

5.2.3 Developing the Safety Argument

The safety argument needs to be developed so that the top level claim (that the change achieves the acceptable level of safety) can be supported by appeal to evidence in some form (see below). This section gives guidance on developing the safety argument by decomposing the top level claim. Partitioning the safety argument across the domains of the TAS is dealt with separately in section 5.3. Further, more general, guidance can be found in the papers referenced in Appendix D. Note: detailed guidance on decomposition of safety arguments is difficult as, by its nature, it is a creative exercise.

Each claim of the safety argument is decomposed into sub-claims, each addressing a part of the parent claim, such that when the sub-claims are taken together they completely address the parent claim. Decomposition of...
Claims should be supported by strategies which explain the approach taken in the decomposition. Use of strategies helps to explain the safety argument and assists reasoning as to the completeness and correctness of the argument. Strategies should be supported by additional information as necessary to ensure that the safety argument is clearly stated; this will include any assumptions made by the strategy and any justifications required to demonstrate that the strategy is valid.

The safety argument should make the link between the top level claim and the evidence produced during development of the change. Where the evidence produced by existing approaches (e.g. standards, AMCs) is sufficient to support the claim, the safety argument should only be developed down to the execution of that approach, along with justification that the context (see section 5.1.1) assumed by the approach matches the context required by the safety argument.

Where existing approaches do not provide the evidence required to support the claim, either the existing approaches must be adapted or augmented, or it may be necessary to develop a new approach to generate the evidence needed. (Where possible, these new approaches should be developed in such a way that they can be reused in future applications.) Where new or adapted approaches are developed, it may be necessary to develop the safety argument in more detail in order to justify these approaches and to ensure that the generated evidence will be sufficient. Especially where new approaches are developed, the safety argument should be specific about the evidence required and why it is required; this supports the exercise of reviewing the safety argument to determine whether its claims are in turn satisfied by that evidence.

Consideration should be given to creating guidelines on the rigour of evidence required to support each claim made by the argument. This should take into account the types of evidence available and the diversity between these types of evidence. Where only one or two sources of evidence are available and / or where these evidence come from similar sources, a much higher degree of confidence is required in each piece of evidence than where more (or more diverse) different sources are available. In some domains and / or types of argument, it may be possible to develop a metric for the degree of rigour required.

At all levels of the safety argument, it is important to consider both direct evidence and backing evidence as explained in section 5.1.1.

5.2.4 The Next Level of the Argument

The top level claim (Claim 0) is broken down into the claims shown in Figure 14 which address the different stages of the development lifecycle. The development of these claims is further addressed in section 6.5.2.

- Claim 1: Change X is specified such that it will achieve an acceptable level of safety: This claim focuses on what is being changed (e.g. introduction of a new concept or service) without considering the details of how the change is implemented. In this claim, the change is considered in terms of high level functionality and performance, operational behaviour, modes of operation and scenario analysis. Even at this level, the change should be partitioned into the different domains within the TAS.

14 Alignment to system development lifecycles is discussed in section 4.4.
to facilitate initial development of the safety argument. In an ATM argument, for example, this claim is made at the operational level, considering the paths which the aircraft take through the airspace, without considering the tasks or equipment employed to guide them to these paths. This claim includes the performance of the change as specified (including consideration of all normal, abnormal, degraded and emergency conditions) in the absence of failure.

- **Claim 2: Logical design for change X satisfies the specification and is realistic:** This claim demonstrates that the logical design of the change has the functionality and behavioural and performance attributes necessary to satisfy the specification considered in Claim 1. This claim considers all normal, abnormal, degraded and emergency conditions of the operational environment. In addition, this claim considers all the possible hazardous failure modes of the logical design and sets mitigations and assurance requirements such that the system is acceptably safe in the presence of these failures.

- **Claim 3: Implementation of the logical design for change X is complete and correct:** This claim demonstrates that the implementation of the change correctly implements the design. As well as directly ensuring that all the requirements are met, this part of the argument also assesses the design to ensure that any inadvertent adverse safety properties are identified and (where appropriate) mitigated. It is to support this claim that detailed assessments of the actual equipment and operations are made.

- **Claim 4: The transition to introduce change X is acceptably safe:** This claim is concerned with assuring that the components of the change (equipment, people and procedures) can be safely brought into operational service, considering both the readiness of the components and the safety of the transition itself: this includes assuring that the change can be brought into service without adversely affecting the safety of existing on-going operations during the period of transition from current operations to the new situation. Where a change is introduced in multiple stages, each individual stage needs to be fully considered within this claim.

- **Claim 5: The service(s) introduced by change X will continue to be demonstrated as acceptably safe in operational service:** This claim is concerned with (a) ensuring that the ‘a priori’ safety assessment (made in Claims 1 – 3) is supported by in service evidence (and addressing any deviations of the actual system from the predicted performance) and (b) with ensuring that any changes to the system or its environment are correctly monitored (and that any corrective actions needed are implemented). It is here that complete and accurate identification of the relationship between the part of the system being changed and the rest of the TAS and external environment is critical: this is necessary so that

15 In this context, logical design is a high-level architectural representation, independent from the implementation. As such it considers the functions provided by system elements (i.e. human roles and tasks and machine-based functions), but not equipment, personnel or procedures which provide these functions.

16 Physical implementation includes the details of equipment (hardware, software and data), people (flight crew, controllers and maintainers), operation and maintenance procedures, training and sectorisation.

17 Changes to the system in operation may be through degradation of the equipment or through intentional changes following the initial introduction; changes to the operational environment would include changes in the way in which the airspace is used.
the correct items in the TAS and the external environment can be monitored and so that corrective action can be taken where necessary.

5.3 Partitioning the Safety Argument

Safety arguments can become complex, especially when the systems about which they are made are complex or large as in the case of the TAS.

In order to make such safety arguments manageable, they need to be split into smaller sub-arguments. The key principle is to split the argument into well-defined modules, with well-defined interfaces so that these modules can be developed separately from one another in confidence that the final result will be a consistent, complete and correct overall safety argument. This approach is analogous to similar principles in software and system design.

5.3.1 Safety Argument Modules

A module encapsulates a particular part of the safety argument; for example modules could be used to divide the safety argument into the individual domains of the TAS, or to contain the parts of the safety argument pertaining to individual organisations. (More guidance on the choice of modules is given in section 5.3.3.)

A module defines a number of claims made by the module and provides the safety argument structure (potentially including all the types of element of a safety argument) to support those claims. The safety argument made by the module will have associated context and caveats and will have dependencies on claims made outside the module.

The interface of a module should be “public” in the sense that a number of attributes are defined to allow the module to be composed with other modules to form a complete safety argument. The detail of the safety argument in the module can be “hidden” within the module, although it obviously must be available for review to confirm that the claims made by the module are demonstrable. The “public view” of a module is illustrated in Figure 15.
The attributes defined at the boundary of the module shown in Figure 15 are:

1. **Claims** made by the module – i.e. those which the module provides the safety argument to support
2. **Module context**, defining the environment within which the arguments in the module are developed – see section 5.3.1.1
3. **Module caveats**, defining the parameters which must be respected in order for the safety argument in the module to be valid – see section 5.3.1.1
4. **Dependencies** - claims identified within the module, but for which another module provides the argument to support
5. **Inherited caveats and assumptions**, imported from other modules

In addition, the following may also be defined at the boundary of a module, although not shown here:

6. **Evidence** presented by the module
7. References to evidence presented in other modules which is required to support the current module.
8. References to context defined in other modules which forms part of the context for the current module.

Clear definition of the module interface is critical to the success of the modularisation; some suggested layouts for interface definitions are provided in [16]. (It should be noted that [16] identifies 7 different attributes at the module interface: two of these have been subsumed into item 5 above for simplicity within the treatment here.)

Modularisation is important to the ASCOS Method because it allows:

- Clear definition of the interaction between different elements of the change and of the TAS.
• Compartmentalisation of different parts of the safety argument, allowing updates to parts of the safety argument without affecting the rest, as long as the safety argument is unchanged at the interface of the module.

• Reuse of parts of the safety argument without requiring extensive redevelopment, again as long as the assurance contracts with other parts of the safety argument remain unchanged.

• Individual parts of the safety argument to adopt the practices habitually used in the domain while also ensuring that the safety argument can be integrated with the rest of the TAS.

• Alignment of modules to domains of the TAS to simplify approval.

5.3.1.1 Module Context and Caveats

The context and caveats published at the boundary of the module are key elements of the modularisation.

The context defines the environment (in the widest sense) in which the safety argument is made.

The caveats define items which must be considered when applying the safety argument because they either restrict the way in which components of the change can be put together, or they restrict the operational service use to which the change can be put.

It is therefore critical to ensure that the context and caveats are correctly published at the module boundary, because the safety argument made by the module is only valid if:

- the context reflects the environment within which the change is used
- the caveats are respected

An example is given in the next section.

This highlights the need for someone (the argument architect) to consider the overall safety argument and ensure that the separate modules are correctly integrated – see section 5.4.

5.3.2 Assurance Contracts

The primary links between modules are dependency-claim relationships, the dependency of one module (for example the assurance of software elements of the change) is linked to the claim of another module (i.e. that a particular software package is assured to a defined assurance level)\(^ {18}\). However, each claim also has associated context and caveats. Part of the module linking process is to ensure that the claims are valid in the context relevant to both modules and that any caveats are correctly transferred. In the above example, it may be necessary to ensure that the software has been assured to operate in the environment (e.g. on the processing platform) used on the aircraft.

\(^{18}\) Note there may be many links between the same modules and these can be rolled into a single link to avoid over-complication.
Assurance contracts19 provide a way of documenting and managing these links between modules. The assurance contract provides a means of justifying that the dependencies of one module are satisfied by the claims in another and ensuring that the related context and caveats are correctly communicated between modules. The example described above is illustrated in Figure 16.

Where modules are used to capture existing safety arguments, such assurance contracts may already partially exist as agreements between domains in the form of interface standards. Such standards should be used where possible, to prevent redeveloping interfaces which already exist. However, these standards need to be evaluated to confirm whether they cover all the aspects required by the assurance contract and are valid for the required context, or whether additional agreements need to be developed.

19 Within the research papers for Modular Safety Arguments the term “contract” is used to denote the formal arrangement between two or more modules. For the purpose of ASCOS these are referred to as assurance contracts to avoid potential confusion with commercial terminology.
Figure 16: Illustration of linking modules using assurance contracts
5.3.3 Choosing Safety Argument Modules

Systems theory dictates that successful modularisation depends on modules being loosely coupled and highly cohesive. One specific reason for use of modularisation within the ASCOS Method is to partition the safety argument into modules where approval will be granted by different approvers. There are also other reasons for the choice of modules: they may align to:

- divisions of responsibility
- organisational structure
- system architecture
- phases of the lifecycle

In addition, modules may be used:

- as a “wrapper” around existing safety case material, identifying the claims, context, constraints, limitations and assumptions made in the safety case, to allow these to be integrated into the rest of the argument
- as an interface between the different approval approaches in the different domains (e.g. between aircraft operator, aircraft manufacture and airspace planning)
- as a container for issues relating to integration of the overall change
- as an aid to developing the safety requirements for individual parts of the solution, by containing the argument relating to different products in different safety case modules
- as a container for the argument relating to backing evidence (see section 5.1.1), where this evidence may by used in multiple locations throughout the safety argument: rather than justifying these processes multiple times, this justification can be captured once in a separate module and then invoked as context within the direct part of the safety argument where necessary
- as a container for volatile parts of the safety argument in an attempt to minimise the effect of this volatility on other parts of the safety argument – obviously the key to this success is the ability to define a stable interface for the module (Management of variations is discussed further in section 6.8.)

5.3.4 Limiting the Effects of Variation

The purpose of modularisation of the argument is to split the argument into chunks of manageable size so that they can be developed separately. The benefits of this approach are most apparent when an argument needs to be modified - this could be for one of a number of reasons, including:

- variation of the change
- part of the safety argument is found to be incorrect
- inability to provide the evidence envisaged when the safety argument was constructed
- counter evidence produced during in service monitoring
If the modularisation has been carefully chosen, it should be possible to limit the impact of the modification to a single module, or a small number of modules. Although it will still be necessary to repeat the verification step, this should also be simpler, as only the items which have been modified (and their effect on other items) need to be revisited.

In addition to careful choice of module boundaries, careful application of the following principles can reduce the degree to which change propagates outside affected modules – this therefore assists in minimising the impact of changes.

1. **Avoid unnecessary restriction of context**: When defining context make the definition as broad as possible: for example, if different modules make differing assumptions about operating temperature (e.g. module A assumes 10-20°C and module B assumes 20-30°C) the context is not consistent. However, it may be possible to extend these ranges without adverse effect on the safety argument. If this is done at the outset, it prevents inconsistencies when modules are combined.

2. **State dependencies as limits rather than objectives**: Define the claim based on the minimum level of support which is sufficient to make the safety argument, rather than on the level of support which would ideally be available.

3. **State dependencies as ends rather than means**: Define the claim based on what needs to be demonstrated, rather than how it should be demonstrated. This gives maximum flexibility to the module making the safety argument, with the potential side effect of making that claim more easily reusable in other parts of the safety argument.

5.3.5 **Example Module Structures**

As the example below for a ground vehicle shows, even a modular safety argument architecture can still be very complex but only because the system it is addressing is complex. Modularisation provides a sound basis for identifying the inter-module links that do or should exist, and making sure these links are valid and functioning.
Figure 17: Example modular safety architecture

Note: the diagram is only intended to be illustrative, to highlight the complexity of the assurance interactions that can be present in a typical safety critical system. In this illustration it is not intended that the detail in the boxes should be readable.

Figure 18 presents a possible safety argument architecture for the safe operation of Electronic Flight Bag (EFB) technology. This example is presented purely to illustrate modularisation; in a real application it would be necessary to consider the intended function of the EFB in detail.

Figure 18: Modular Safety Argument Architecture for Operation of Electronic Flight Bag (EFB)
It can be seen that, in this case, the high level modules are more abstract, while the lower level modules deal with more concrete parts of the system.

It should be noted that although the introduction of the EFB may not require changes to the services provided by airspace planning, a module is still required for the airspace planning safety argument, because assumptions are made about the services provided. Similarly, a module has been defined to represent the external environment, to capture the assumptions made by the safety argument about this environment.

The safety argument architecture shown here is not a substitute for a full representation of the argument: this diagram only shows how the various modules of the safety argument fit together, and would need to be accompanied by the full definition of the safety argument within each module, as well as verification that the modules, when composed together, do form a complete, correct and consistent safety argument.

5.4 The Need for an Argument Architect

It has been shown above that modularisation allows subdivision of the safety argument into modules connected by assurance contracts so that these modules can be developed separately from one another in confidence that the final result will be a consistent, complete and correct overall safety argument. However, this also introduces a significant risk of divergence between the modules in ways which were not envisaged when the modules were created. It is therefore necessary to ensure that the safety argument is properly maintained and integrated throughout the development.

When engineering complex systems, the role of system architect is responsible for the design of the overall system; this includes ensuring the integration of the resultant modules. The ASCOS Method gives the argument architect the similar role of designing and maintaining the safety argument, which includes ensuring that the safety argument modules are correctly bounded and interfaced to other modules throughout the development.

When considering the number of organisations involved in the TAS and their disparate roles, it is often not easy to identify who should be the argument architect. This in part explains why a key concern within the industry is the inadequacy of the management of interfaces between domains; sometimes integration is supervised by the approver or even ignored altogether.

Whilst the approver is in a position to oversee the argument architect role it would be inappropriate to task authorities with engineering the integration. Due to the way in which such safety arguments span multiple domains, it may not be possible for whole safety argument to be approved by one approver. As a result, it is necessary during the initial planning of the approval approach to clearly define the parts of the safety argument which require endorsement by each approver.

(Section 7.1.4 discusses the argument architect role in more detail, and the relationship with the TAS Engineering and Safety Group (TESG).)
5.4.1 Responsibility for Maintaining the Safety Argument

The module owner remains responsible for the content of their individual module(s) of the safety argument, including ensuring that the module is correctly represented at its interface. (This includes ensuring that the module does indeed demonstrate the claims which it makes as well as ensuring that all the relevant context, caveats and dependencies are correctly stated.)

The argument architect is responsible for ensuring that the modules are interfaced correctly via assurance contracts. This will require co-ordination with the module owners and approvers: it may be necessary to implement this co-ordination via the TESG (see section 7.1.5).

5.5 Problems and Pitfalls

The safety argument approach is not without its critics. A recent example is the Haddon-Cave investigation into the loss of a Nimrod aircraft over Afghanistan [17] which levelled a number of criticisms at the use of safety cases. This is not a criticism of the use of safety argument per se, but is a criticism of the way in which this approach has been poorly applied. In particular, Haddon-Cave suggested that safety cases should be:

- succinct
- home-grown
- accessible
- proportionate
- easy to understand
- document-lite

A rigorous approach to safety arguments helps to achieve these objectives. Some ways in which this is achieved is through ensuring that the safety argument remains focused on the goal and by ensuring that the safety argument is structured using precise definitions so that it is easy to follow and to reason about. Safety arguments must not be made more complex than necessary, and should adopt existing approaches (such as demonstration of compliance with existing standards) at the highest level possible.

Care is certainly needed when constructing a safety argument. Mistakes can be made or poor reasoning can be used in the construction of safety arguments, resulting in fallacious arguments. Arguments can be fallacious whether or not the conclusions are true. Fallacious arguments fall into two categories:

- A formal fallacy is a pattern of reasoning that is always wrong. This is due to a flaw in the logical structure of the argument which renders the argument invalid.
- An informal fallacy is an argument whose stated premises fail to support its proposed conclusion.

20 Haddon-Cave also recommended that the documents should be renamed “Risk Cases”.
21 However, complexity of the safety argument is often driven by complexity of the system (in the widest sense of the term) about which the safety argument is being made.
The OPENCOSS deliverable D4.1 [18] (section 3.3.3) contains a summary taxonomy (first published in [19], and listed below) of common mistakes made, which can lead to fallacious arguments. However, arguments may not be incorrect or inadequate just because they exhibit the characteristics of these fallacies. See [20] and [21] for examples of some of the issues with circular arguments and appeals to expert judgement. Categories of fallacies are:

- Circular reasoning occurs when an argument is structured so that it reasserts its claim as a premise or defines a key term in a way that makes its claim trivially true.
- Diversionary arguments contain excessive amounts of irrelevant material that could distract a reader from a weakly supported claim.
- Fallacious appeals invoke irrelevant authorities, concepts, or comparisons as evidence.
- Mathematical fallacies describe common pitfalls in probabilistic and statistical inferences.
- Unsupported assertions are claims stated without evidence.
- Anecdotal arguments show that their claims hold in some circumstances but fail to generalize their validity.
- Omission of key evidence which establishes (or counters) the validity of the safety argument.
- Linguistic fallacies concern the use of misleading language that might lead the reader to an unwarranted conclusion. These fallacies may appear in any informal argument.

Another significant issue in the application of logical thinking is the notion of “confirmation bias”, essentially the tendency of people to favour information that confirms their beliefs or in this case positive claims about the system. Whilst clearly common to all forms of reasoning and scientific enquiry it is particularly prevalent in the absence of any clear rules, structure and guidance (e.g. that is provided by comprehensive certification specifications). However, even in this latter example case the belief that a system of certification is adequate and effective can long outlast evidence that shows otherwise. To this end it is important that arguments are developed in a scientific manner taking into account a balanced view of all relevant evidence (both confirmational and falsifying), including an active search for counter evidence in relation to any claims. Note that in a scientific approach, a hypothesis is stated and then the main part of the research is aimed at rejecting the hypothesis. The same approach should also be considered in the substantiation of claims.
6 Applying the ASCOS Method

6.1 How to use this section

In section 3, the ASCOS Method was described at a high level as a sequence of steps, as illustrated in Figure 19. The following sections (section 6.2 to section 6.7) provide more detailed guidance on how to apply each of these steps to a specific change. It should be noted that this description is not intended to define a formal process; instead it should be treated as a framework to be used to develop an approval path (with supporting safety argument and approval plan) for a specific change.

![Figure 19: Overall View of ASCOS Method (copy of Figure 2)](image)

The development of a safety argument is used where necessary to demonstrate that the chosen approval path achieves the acceptable level of safety. The safety argument is divided into modules aligned to the domains of the TAS, with assurance contracts defined between the modules to ensure that the dependencies between parts of the change are correctly captured and managed.

The ASCOS Method is shown as a linear sequence of steps. However, as noted in section 3.1, a degree of iteration is usually required. The implementation of this iteration is discussed further in section 6.8.
The ASCOS Method is designed so that it can be used alongside a range of system development lifecycles. As an example a mapping to the E-OCVM [6] lifecycle is given in Table 2 (see section 4.4). The organisation applying the ASCOS Method should map its steps to their own lifecycle; this will then provide a guide as to when the steps need to be undertaken. Note that the steps of the ASCOS Method span multiple stages in the development lifecycle.

The concepts of the ASCOS Method are intended to be widely applicable. In particular it is not limited to certification where an item (or organisation) is confirmed to comply with an agreed standard; instead it can also be applied to approval where there is not an agreed standard against which to measure the subject of the approval. However, it is also intended that the ASCOS Method can be applied in the case of certification if it is useful to do so – for example where the proposed change is mostly, but not entirely, covered by existing standards.

The ASCOS Method can also apply to changes which do not map directly onto the stages shown in Figure 19. For example, development of a new regulation or SARP is only the first stage in developing a novel change and putting it into service: the regulation itself does not enter operational service. However it is still possible to use the ASCOS Method to develop such a regulation, but the steps of the method will need a degree of reinterpretation. Note that the feedback cycle still applies, as application of the regulation may uncover flaws which need to be addressed in amendments.

Another change for which the lifecycle may appear significantly different is the licensing of a new organisation. The ASCOS Method is still applicable: in this case the change definition should be understood as the definition of the remit or scope of operation of the organisation; development of the solution should be understood as designing the organisational structure and the procedures to be followed.

The following sections present a logical progression through the application of the ASCOS Method. Iteration is addressed separately in section 6.8.

6.2 Identify the Need

The approval process really starts with defining the change. However, before the change to the TAS can be defined, it is necessary to identify that the change is needed, and it is useful to understand this step in order to appreciate the context for a change. However the approval process truly commences with the definition of the change as described in section 6.3.

Needs for change arise because of:

- a business need
- continuous safety monitoring
- external changes
Note: changes in one part of the TAS can lead to changes in another part of the TAS: these should be treated as a single change to ensure that the impact of a given change is fully understood and addressed.

The organisation identifying the need will be different in each case. Furthermore, the bullets above represent broad groups of changes: different changes within each of the groups will have different change leaders. Each of these broad needs for change is discussed further in the following sections.

Once the need has been identified, changes can be developed to address the need. A process of exploring the possible changes needs to be undertaken to determine what (if any) changes are feasible. Any organisation will have its own established process for making the required business case for a change; construction of business cases is outside the scope of the ASCOS Method. However, an understanding of how the ASCOS Method will be applied is necessary as an input to establishing the business case.

6.2.1 Business Needs

The business need for a change may include:

- additional capacity within the TAS (due to demand exceeding capacity)
- greater efficiency (because of increased costs or reduced revenue)
- replacement of an obsolescent part

These needs are likely to be identified by operators, when they find that the existing system is

- operating at maximum capacity (e.g. unable to accommodate the number of passengers who are requesting service) or
- operating inefficiently

Organisations within the TAS may identify changes to their own processes or they may identify possible changes to the wider system, which they may pass on to their suppliers. The type of change proposed could be:

- development and introduction of a new (perhaps larger) aircraft
- a new operating concept (e.g. RPAS operating in unsegregated airspace)
- new operating arrangements (e.g. RVSM or self-assured separation)
- a new operator providing low cost flights on existing routes
- a replacement part based on new technology because the previous part is no longer available
6.2.2 Continuous Safety Monitoring

Continuous safety monitoring (CSM) is an essential part of any safety management system (SMS) to monitor the level of safety achieved by the system and to identify any trends which indicate degradation of safety. EASA undertakes some monitoring at the overall European level, which results in actions which are published in its European Aviation Safety Plan (EASp) [22]. This is complemented by requirements within the relevant regulations for provision of services (e.g. ATS.OR.200 (a) (3) (i) within the draft regulation for (air traffic) service providers [23]).

ASCOS has developed a methodology and supporting tools for multi-stakeholder CSM, using a baseline risk picture for the TAS. (This is documented in the final report for Work Package 2 [7].) This methodology identifies safety performance indicators (SPIs) which can be monitored to reveal trends and therefore indicate areas where change is needed in order to maintain or improve safety.

When a change is introduced, the safety argument for the change will be based on predictions of safety performance. Part of the safety argument includes putting in place monitoring to show that these predictions are achieved in practice. The general SPIs should be augmented by SPIs associated with individual changes to the TAS, where additional parameters need to be monitored. These additional SPIs are developed as part of constructing the safety argument for an individual change.

Where CSM reveals trends of decreasing or unacceptable safety, this indicates a need for change to the TAS. This could be implemented through development of a safety directive by the authority. However, it will often be the case that the development and implementation of the change will require involvement from organisations across the TAS.

6.2.3 External Changes

A change in the environment outside the TAS may lead to changes being needed within the TAS. Examples could include:

- changes to external regulations
- changes to prevailing weather patterns or extremes of weather
- construction of new tall buildings
- changes to patterns of military activity

In each case the external change would initially be identified by the organisation affected by the change, which would be responsible for evaluating the need for change to the TAS.

22 In the case where the CSM is monitoring the safety of a previously implemented change, this could be considered as a modification of that change, but in practice it is better to consider it as a new change.
6.3 Define the Change

Once the need for change has been identified, the change itself needs to be defined. This definition is an iterative process, especially during the early parts of the lifecycle. Multiple changes may be proposed and evaluated: some will be discarded as not meeting (all) the need, or as being infeasible. The change definition will become more detailed as the lifecycle progresses.

The ASCOS Method is not intended to replace existing methodologies for defining the change. Instead, this section identifies what aspects of the change need to be defined so that the ASCOS Method can be applied. If an existing methodology does not deliver all the aspects covered here, it can still be used – but it needs to be extended to ensure that all these aspects are covered.

The following aspects of the change need to be identified, in order to apply the ASCOS Method:

- functional definition
- influences within the existing system shaping the change, including future anticipated changes
- assumptions
- impact of the change
- stages of the change
- transition into service
- organisations involved
- the acceptable level of safety which the change needs to achieve

Each of these aspects is covered further in the sections below.

Once the aspects above have been defined, the approval path for the change can be developed: this is covered in section 6.4.

If later alterations are made to any aspect of the definition of the change\(^ {23} \), the overall change definition should be reviewed and updated accordingly. The impact of this alteration on the approval path (see section 6.4) and the later steps of the ASCOS Method must also be assessed and updates made accordingly.

6.3.1 Functional Definition

The change must be defined in terms of function and performance. In other words, it is necessary to answer the question: what will change about how the TAS operates or behaves? This must go beyond “what to we want to achieve?” and define the change to the TAS at a conceptual level, so that the affected domains and applicable regulations can be identified.

\(^ {23} \) This is almost inevitable with complex changes.
For example, if we want to achieve a reduction in loss of control incidents, possible solutions include:

- development of an Automated Aircraft Recovery System (AARS)
- improved pilot training in upset recovery

It is clear that development of an AARS will have significantly more technological involvement, including greater impact on other domains such as ATM, than choosing improved pilot training.

However, it is not necessary at this stage to define the detailed implementation of the change. A common mistake at this stage is to descend deep into the detailed design of the change (e.g. the architecture of the equipment involved) without fully defining the functional changes to the TAS.

A key goal of creating the function definition is to allow all the hazards at this conceptual level to be identified.

It is also important to develop a description of how the change would be used within the TAS: this is known as an operational concept and should cover both normal (intended) operation and operation in abnormal or degraded conditions. (The development of an operational concept is covered in various standards and methodologies within the industry, such as E-OCVM [6] and DO-264 [24] Annex C.)

For example, introduction of an automated aircraft recovery system (AARS) could be defined as a function which allows the pilot to request automated recovery of the aircraft to stable, level flight. The description would then be developed to work out how this pilot would interface with this function, and how the function would affect other domains within the TAS (e.g. the air traffic control domain). It would also describe the scenarios in which the function would be used. However, at this stage, it is not necessary to describe the technology which would be used, nor where it would be placed in the cockpit – these details can be introduced at a later stage of development.

6.3.1.1 Generic vs Specific changes

Where the change is an operational change to the TAS, it is important to define the actual changes which are proposed. For example, where an operator is proposing introduction of a RPAS into unsegregated airspace, it is important to specify features such as:

- the types of flight proposed - e.g. will it fly from one aerodrome to another (to deliver goods) or will it hover / circle over a particular area (to perform some form of observation)?
- the sectors which the RPAS will fly through
- the functions which the ANSPs will provide in relation to control or surveillance of the RPAS

It is also useful to identify the specific organisations involved (e.g. ANSPs, maintenance organisations) as these will need to be consulted regarding the impact of the change on their operations.

These details are important because they significantly affect the hazards which may be introduced or affected by the operation, and the available mitigations for them.
However, many changes start off as development of a new product or concept, which later becomes a specific change to the TAS. With such changes, it is not initially possible to describe a specific operational change to the TAS. In this case it is crucial to define the assumptions made about how the product or concept will be operated. In order to make the product or concept as broadly applicable as possible, the manufacturer will want to make these assumptions cover a wide range of operations. Assumptions are covered further in section 6.3.3.

6.3.2 Factors Shaping the Change

The existing TAS has a large effect on the change being made.

- The change must operate within the structures of the existing TAS (except where those structures themselves are being changed).
- The change must consider the relevant existing regulations. In some cases the ASCOS Method will be applied to make a safety argument to replace demonstration of compliance with existing regulations. However, there may be other regulations with which the change will still need to comply.
- The scope of the change will be limited by what it is feasible to change within the existing TAS.
- The scope should be restricted to only that which it is necessary to change: existing operations should not be changed unnecessarily — this will introduce additional cost and disruption.

All these factors may affect the approval path and the safety argument for the change.

It is also important to take into account other foreseen changes. The Future Aviation Safety Team (FAST) Areas of Change (AoC) list [25] presents a list of expected changes to the worldwide aviation system along with related hazards. This list should be reviewed during change definition to identify areas which have an impact on (or are impacted by) the proposed change. The change should take the impact of these future changes into account, avoiding the need for a further adaptation of the change when items in the AoC list are introduced into the TAS. For example, introduction of an RPAS will be significantly affected by AoC_11, which notes the increasing diversity of aircraft fleets, in terms of size, capability and equipage.

6.3.3 Assumptions

During the development of a change, it is often necessary to make assumptions where the facts are not known. This is especially true during the early stages of the development of a change, where many of implementation details are unknown.

Assumptions may include:

- the context in which the change will be operated – this is particularly critical when developing a new product, in order to explore all the hazards associated with the product
- areas of the TAS which will not be impacted by the change
other changes which will be made to the TAS before this change enters operational service

- technology which will be used

It may also be necessary to assume that the current level of safety within the system is tolerable.

Assumptions are often made because they relate to behaviour or properties in another domain of the TAS. The concept of modularisation of the safety argument (see sections 5.3, 6.4.3.1 and 6.5.1.3) provides support for ensuring that these assumptions are recorded and agreed by all parties involved to ensure that they are correctly managed.

In theory, no assumptions should be left over at the point of acceptance; however in reality some assumptions are made which cannot be validated before approval is granted. A register of assumptions should be established to record and monitor all assumptions made. This register should include the reasons for the assumption and the parts of the development which are affected by the assumption. The assumptions should be evaluated to identify which need to be validated in order to obtain approval, and which may remain as assumptions when approval is granted. The assumptions register must be kept up to date during the development of the change.

During the development of the change, assumptions should be evaluated and where possible validated; it may then be possible to convert them from assumptions into statements. Where an assumption is found to be incorrect, the impact on the development must be assessed.

It is inevitable that further assumptions will be made as the change is developed: it is critical that these assumptions are fully captured and that their impact on the approval path (and the supporting assessment) is fully evaluated (see section 6.8).

Some assumptions may remain even at the end of a development. For example, when developing a new product, assumptions will be made about:

- the environment in which it is to be operated
- how it is used
- how it will be maintained.

These assumptions then become limitations on how the product must be used in order for its approval to remain valid.

6.3.4 Impact of the Change on Safety

The impact of the change was initially covered in section 4.3.

During the initial definition of the change it is important to define the impact of the change sufficiently to understand which domains of the TAS will be affected by the change, so that the approval path for the change
can be developed (see section 6.4). The impact assessment needs to consider both operational systems and support systems. At this stage it is not necessary (and probably not possible) to understand the full details of the effect on the different parts of the TAS: however, it is important to understand as fully as possible which parts of the TAS will be affected, in order to build as complete a view of the approval path as possible. Of course, there may be effects which are not apparent at this stage: when these become apparent the impact evaluation needs to be revised accordingly.

Some changes will introduce interfaces between domains where these interfaces did not previously exist: these interfaces require close attention to ensure that they are fully captured in assurance contracts between the affected modules of the argument; it is also necessary to ensure that the affected parties understand the importance of the interface and to ensure that it is fully incorporated into their processes.

As the change is assessed, the impact of the change on the safety of the TAS will be further explored: but this will largely be done through the various safety assessment processes, as described in section 6.5.

When completed (prior to application for approval of the change) the safety argument will need to establish:

- which parts of the TAS are affected by the change
- that each affected part of the TAS has been analysed to identify and set safety requirements
- that safety requirements for each affected part of the TAS have been satisfied such that the acceptable level of safety is achieved – see section 6.3.8

6.3.5 Stages of the Change

As discussed in section 4.5, complex changes are often developed in multiple stages.

When defining a change comprising multiple stages, each should be treated as a separate change, with its own definition and approval path, albeit as part of an integrated overall change. This is equally true for changes where stages are aligned to different parts of the lifecycle, as for changes which are aligned to different operational states of the TAS.

The change definition should be revisited at the beginning of each stage to ensure that any alterations resulting from previous stages are taken into account and that correct definition of the (stage of the) change and the approval path (including the individual stages in each case) is maintained.

6.3.6 Transition into Service

For each change a process of transition will be followed to introduce the change into service. This transition (from pre-change TAS to post-change TAS) needs to be fully defined and assessed to ensure that it can be completed safely. Various aspects need to be considered, including:

24 Support systems include training systems, test and development systems, contingency facilities, etc.
• preparation for operation
• implementation of arrangements for safety management, change management, configuration control
• planning of the actual switch-over process
• assessment of the switch-over
• definition of reversion arrangements

It is unlikely that all this detail will be available at the beginning of the change lifecycle, and for some changes this transition will be very simple; however the transition does need to be defined and assessed early enough to make sure that all the required arrangements have been made before introducing the change to service.

Where a change is staged, the transition needs to be defined for each stage.

6.3.7 Organisations Involved

It is important to identify who will be involved in the change, including:

• the change leader (driving the change)
• the applicant (who will apply for approval)
• the approver (responsible for approving the change)
• the TESG (co-ordinating the engineering and safety aspects of a major / complex change)
• any other organisations affected by the change

Roles and responsibilities within the ASCOS Method, including identification of who will be involved at the various stages of the change, are discussed further in section 7.

Identification of the organisations and domains involved in the change will also help to determine the modules of the safety argument, as these are usually aligned such that interfaces between modules correspond to interfaces between organisations and / or domains, using assurance contracts to capture the dependencies between organisations which need to be fulfilled in order to make the safety argument.

6.3.8 Acceptable Level of Safety

When a change is made to the TAS, it is necessary to determine the level of safety which the change needs to achieve – this is the acceptable level of safety. Changes are made for many reasons and often have no intention to improve the level of safety: for such changes it is usually acceptable to demonstrate that the existing level of safety is maintained.

The level of safety must be considered across the whole TAS. It is conceivable that a change may improve safety in one domain while having a negative impact (i.e. worsen safety) in another domain. It is often difficult to justify such a change. To do this, it would be necessary to provide a robust quantification which demonstrates a significant overall positive impact on safety. Production of such a robust quantification is made more difficult by the fact that different domains use different types of targets (often with different units), making it difficult to create valid comparisons between domains (see section 6.3.8.1). A corresponding
assessment would be needed in the event of a change with differing impacts on different sovereign states. (A recommendation for further research in this area is made in section 8.3.7.)

The effect which the change will have on the safety of the TAS must be taken fully into account. Any safety assessment must include both:

- the positive effect (usually from the design intent of the change) to improve the safety (i.e. decrease overall risk)
- the potential negative effects (usually arising from failure to achieve the design intent or from deviations from it)

Note: it may be acceptable for the change to maintain the existing level of safety, especially where the intent of the change is not related to making a safety improvement in the TAS. However, the impact of the design intent on the TAS should still be considered to ensure that there are no unforeseen negative effects.

Probabilistic Risk Assessment models (such as the Safety Risk Model developed in ASCOS WP3 – see D3.6 [5]) can be used to perform an early evaluation of the impact of a proposed change on the safety of the system. However, it is important to fully understand the scope of any model to ensure that the full effect of the change is considered.

When evaluating an improvement in safety, the evaluation of reduction in risk should include the effect of removal of existing elements of the system which are being replaced. (For example these may be obsolete or difficult to repair, and this may have a knock on effect on the safety of the system when these are in use.)

The actual level of safety deemed to be acceptable may be an absolute level or it may be relative (e.g. that the changed TAS should be no less safe than the existing TAS). Where a change is made in the context of an existing Safety Management System (SMS), the acceptable level of safety may be defined in that SMS. For wider-ranging changes, the acceptable level of safety should be defined by the approver.

Usually the change is not replacing the whole system for which the target is defined and any target level of safety therefore needs to be apportioned to allow for the risk contributions from other parts of the TAS; often the level of these contributions needs to be assumed.

For a change which takes a (purely) compliance based approach, the level of safety may be expressed in terms of compliance with a set of regulations. However, the acceptable level of safety is then implicit in the sense that it is the level of safety achieved by a change which complies with the regulations.

6.3.8.1 Difficulty of comparison between domains

Although we would like to live in an accident free world, we accept that accidents happen. We attempt to reduce the risk of accidents to the lowest level we can realistically achieve, while accepting that a level of risk is a necessary byproduct of aviation.
Because accidents are (thankfully) rare, and because the sequence of events leading from measurable events to accidents is not always well-understood, we cannot always sensibly set targets on the rates of the accidents themselves. Instead, we set targets on events which can lead to accidents if certain mitigations (often beyond our control) fail. There is significant uncertainty over the propagation between the event against which we set the target and the actual accident.

As a result, we have targets within different domains which are related to precursors to the accidents, rather than the accidents themselves, and which are expressed in different units (because they are expressed in the units which make sense within the domain). The regulations are designed around achieving these targets.

When we make a change to the TAS, we need to determine the acceptable level of safety for that change. For changes within a single domain, we apportion the overall target for the domain to derive a target for the part of the TAS which we are changing.

Where a change spans multiple domains, it is necessary to demonstrate that the change is acceptably safe in all affected domains. Ideally, we would agree a single target for the level of safety to be achieved by the change. In order to do this, we need to build a model of the whole TAS, to allow us to link all the causes from the different domains together and then to derive targets for the particular parts of each domain which will be affected by the change. The whole industry (authorities, applicants and other stakeholders) needs to have sufficient confidence in that model to accept the derived targets, and to allow them to be used instead of the accepted targets within each domain.

The industry has developed various accident models, including the ASCOS model (see D3.6 [5]). These are useful in evaluating risks and the impact of changes (see discussions elsewhere in this report). In the long term it may be possible to use such a model of the whole TAS to derive targets tailored for a specific change, to be used instead of the current "generic" targets. However, the models are not yet at the level of maturity needed to allow them to be used in this way. Until this level of safety is achieved, changes using the ASCOS Method need to apply the existing approaches and targets within each domain.

6.4 Develop the Approval Path

Once the change has been defined, the next step is to develop the path\(^25\) to be followed in order to obtain approval for the change.

It should be noted that the applicant must satisfy themselves that the change is acceptably safe; they may have a legal responsibility to do this under national primary legislation\(^26\). This need may seem obvious, but it can be lost in the focus on gaining external approval.

\(^{25}\) The concept of an approval path was introduced in section 3.2.

\(^{26}\) For example, the UK Health and Safety at Work Act 1974 [26] sections 2(1) and 3(1).
For most aviation changes, the applicant must then also demonstrate the safety of the change to the satisfaction of the relevant approver before the change is brought into service. If the applicant cannot satisfy themselves then it is very unlikely that they will be able to convince the approver.

This section provides guidance on the process of developing the approval path:

- defining and developing the approval path itself
- developing the modules of the safety argument needed to support the application for approval
- identifying who needs to be involved in the process
- developing and agreeing the approval plan

In addition, some guidance is provided on:

- how the ASCOS Method might be different when making organisational changes
- the role of standards in approval submissions

As explained in section 3, the concept of an approval path encompasses the current concept of establishing a certification basis and certification plan, but deliberately widens the scope to also include changes where certification is either only a component of the change or does not feature at all.

6.4.1 Define the Top Level Safety Argument

The first step towards developing the approval path is to define what claim(s) is / are being made about the change in order to support the application for approval. It is critical to ensure that the approval path focuses on demonstrating the correct claim; otherwise it is easy to waste effort on activities which are included in standards but not actually required to support the claim.

A generic top level claim is presented in section 5.2.2: “Change X to the TAS is acceptably safe”. Definition of the change was handled in section 6.3. The concept of an acceptable level of safety is handled in section 6.3.8. Note: “acceptably safe” may indicate maintaining the current level of safety. In developing the safety argument, it is necessary to ensure that the whole lifecycle of the change is considered. This is the reason that the generic argument (repeated from section 5) is decomposed into five sub-claims to demonstrate that:

- the actual changed part(s) of the TAS are (predicted to be) safe in operation (claims 1-3);
- the process of introducing the change is safe (claim 4);
- the safety of the changed TAS in operation will be monitored to check whether the acceptable level of safety is achieved, and to address any deficiencies found (claim 5).
Although it is not mandatory to present an argument comprising these five claims, they provide a helpful structure to ensure that all these aspects are considered. At this stage each of these claims should be reviewed and, if necessary, adapted to the requirements of the specific change.

As explained in section 4.5.1, not all changes lead directly to an alteration in the operation of the TAS. For example, the development of specifications for an RPAS to be operated in unsegregated airspace may be considered as a change in its own right. It is still (obviously) important to ensure that the specifications developed specify a (conceptual) RPAS which would achieve the acceptable level of safety if implemented, and the ASCOS Method provides a framework for doing this. This (narrowly defined) change would focus on claim 1 of the safety argument and will not be able to demonstrate that claims 2-5 are met. However it is still useful to consider the specification against these claims, and to consider whether anything in the specification developed would make it difficult for these claims to be made. This will facilitate the later development of the full safety argument for introduction into operational service of an RPAS developed to these specifications.

Where a change consists of multiple stages (see section 4.5), the safety argument must be demonstrated for each stage. Depending on the structure and size of each stage, it may be appropriate to develop a separate safety argument for each stage.

It is also necessary to partition the safety argument into modules representing the different domains and organisations involved and to establish assurance contracts between the modules, as a means of managing the dependencies between the modules. The owner of each module will need to demonstrate that the top level safety argument is satisfied to the extent of the owner’s responsibility for the safety of the change. It is useful at this stage to develop an outline module diagram showing the interactions between different parts of the TAS. The intention of this diagram is not to define all the (many) functional interfaces; instead (especially at this stage) it serves to identify the assurance contracts which need to be established in order to support the safety argument. In the example diagram shown in Figure 21, the modules are shown in boxes and the lines between them represent individual assurance contracts.

Figure 20: Generic Logical Argument

27 The importance of managing these interfaces is discussed in section 5.3.2.
6.4.2 Evaluate the Existing Approval Path(s)

Once the overall safety argument has been defined, it is necessary to develop the approval path which will be taken to support the safety argument. The first step of developing the approval path is to review existing approaches used within the industry and identify:

- how existing approaches can be applied to support the safety argument;
- where there are gaps in existing approaches which need to be filled in order to fully support the safety argument.

It is helpful to review the implicit arguments already used for approvals within the TAS as these provide insight into how the existing approaches support a safety argument.

When evaluating existing approval paths, the following questions should be considered:

- **Does the existing path address all the claims made by the top level safety argument?** For example, does it fully ensure that the change will be ready to enter operation? Does it define the monitoring to be undertaken after entry into operation to ensure that the acceptable level of safety is achieved?

- **Can the existing approval path be made more efficient, while still addressing all the claims of the top level argument?**

- **Does the existing approval path fully balance the safety improvements made against the additional risks introduced by the change?** For example, the existing approach may be biased towards considering only the failures of the new (part of the) system by deriving a failure rate and comparing it against a target, without taking into account the safety improvements achieved by introducing the change.

28 It is a recommendation of this document (section 8.3.2) that the arguments implicit within existing approval approaches should be documented to support easier development of approval paths using the ASCOS Method.
• **What assumptions are made by the existing approval paths or standards?** There are often significant implicit assumptions within existing standards or approaches, including:
 - the type of solution (e.g. based around electromechanical rather than electronic)
 - the environment (e.g. weather conditions, behaviour of wake vortices)
 - the means of operation or maintenance (e.g. piloted operation)

 Are these assumptions valid for the *change*? If not, how does this affect the validity of the approach?

• **Does the approval path fully manage interfaces between different parts of the TAS?** Does it ensure that any assurance contracts between different parts are fully defined and arrangements put in place for maintaining them through the lifetime of the *change*. For example, introduction of a new (type of) organisation within the TAS will introduce new assurance requirements to be fulfilled by that organisation.

• **Where the change follows multiple approval paths (i.e. where the system needs multiple approvals, potentially by multiple approvers), are the interfaces between these approval paths fully managed to ensure that the claims made are consistent between the different parts of the TAS?**

6.4.3 Develop the Approval Path

The results of the evaluation described in section 6.4.2 should allow an initial development of the top level safety argument, showing where evidence will be available from existing approaches, and where there are gaps such that further development of the approval path is necessary.

For simple changes, such as introduction of a new replacement part in an existing system, there may be no gaps in the approval path and it may be straightforward to demonstrate that the overall safety argument is satisfied by existing processes. In such cases no further work is needed in designing the approval path, and the next step is to identify the stakeholders in the change (section 6.4.4).

In practice, the development of the approval path for most complex changes will involve developing separate approval paths for the individual domains of the TAS, with each domain supported by its own module(s) of the safety argument. Each of these modules will make the same essential safety argument, but within the context of its own domain of the TAS. Within each module, some parts of the safety argument will be met by the existing approaches and other parts will need additional approaches to be developed.

It is essential that the assurance contracts defining the dependencies between modules are fully and correctly defined and agreed between all parties concerned.

The following sections give guidance on developing the argument to the level required to support an application for approval of the change. The activities described will not necessarily be undertaken strictly in

29 The role of standards within the approval process is further explored in section 6.4.6.2.
the order in which they are presented here; instead they should be considered in parallel, with the overall goal of developing an approval path for the change.

6.4.3.1 Modularising the Safety Argument

The general principles of modularisation of safety arguments were presented in section 5.3. Modularisation allows the overall safety argument to be subdivided into modules, with formally defined assurance contracts between them.

At this stage it is useful to separate the safety argument into modules whose boundaries are aligned to the responsibilities of the various domains within the TAS. This is especially true where approvals in multiple domains and/or from multiple approvers are required. (See section 6.4.5 below.)

This has the advantages of:

- making the overall safety argument easier to visualise and understand
- allowing modules to be developed separately from one another in confidence that the final result will be consistent and correct
- partitioning the safety argument such that each approver needs only:
 - to consider specified modules of the safety argument
 - to be assured that the assurance contracts at the boundary of those modules are correctly implemented

Separation into modules can then be used to allow both applicants and approvers in the individual domains to focus on the part of the safety argument which is pertinent to their domain, while also understanding the relationship between their domain and the other domains.

Assurance contracts should be established between modules, as described in section 5.3.2. Particular care is needed to ensure that the importance of the assurance contract is understood by all parties involved, especially where the assurance contract introduces an interface which is not currently present within the TAS. Consideration should also be given to how the approver (who will be responsible for approving the module pertinent to the domains for which they have responsibility) will be assured that the assurance contracts with other domains have been adequately satisfied.

Modules can also be used for other purposes:

- as a “wrapper” around existing safety case material, identifying the claims, context, constraints, limitations and assumptions made in the safety case, to allow these to be integrated into the rest of the safety argument;
- as a container for issues relating to integration within the overall TAS;
- as an aid to developing the safety requirements for individual parts of the solution, by containing the safety argument relating to different products in different safety case modules;
• to separate direct evidence from backing evidence30 - this can be particularly useful where the same processes are used to generate evidence in different parts of the argument: rather than justifying these processes multiple times, this justification can be captured once in a separate module and then invoked as context within the direct part of the argument where necessary.

6.4.3.2 Decomposing the Safety Argument

The way in which the safety argument is decomposed will be dependent on many factors including:

• the type of change
• the existing approaches available
• the domains involved

Decomposition should generally be guided by two principles:

1. Does the combination of sub-claims, when taken together, prove that the parent claim is true?
2. Have the sub-claims been formulated such that the claim can be supported by evidence?

In addition, decomposition is used here to distinguish between parts of the safety argument which

• are supported by existing processes
• need additional processes to be developed and applied

in order to support the higher level claim. Some ways to develop these additional processes are covered in section 6.4.3.3.

This section gives some options for decomposition of the safety argument, building on the general guidance given in section 5.2.3. A combination of strategies may be necessary and the choice of decomposition should be carefully considered as it has a significant impact on the ease with which the safety argument can be managed. (It is assumed here that the safety argument has already been split into modules to align with domains according to the modularisation principles discussed in section 6.4.3.1.)

• Decomposition by stage: if the change is subdivided into multiple stages which have significant differences (i.e. they are not just progressive deployments of identical technology), the safety argument might be decomposed at the top level to form distinct arguments for each stage, before introducing (for each stage) claims 1 – 5 of the generic argument.

• Decomposition by process: if multiple processes can be combined to support a claim, sub-claims might be generated for each process involved.

• Decomposition by subsystem: if different subsystems are addressed by different sets of processes with different supporting evidence, it is sometimes appropriate to provide a separate sub-claim for each subsystem.

30 See section 5.1.1
In each case, it is important to ensure that the sub-claims, when taken together, fully support the parent claim. The safety argument should be supported by a narrative explaining the decomposition and justifying that the entire parent claim is supported. In the GSN notation, symbols can be used to indicate such justifications in the diagrammatic presentation of the argument.

It is easy to make the mistake of decomposing the safety argument too far; the safety argument should only be decomposed as far as necessary to identify the specific processes and evidence which will be needed to support the top level claim. Other pitfalls to be avoided in the development of safety arguments are covered in section 5.5.

6.4.3.3 Addressing Gaps in the Safety Argument

Once the safety argument has been decomposed as described in section 6.4.3.2, any gaps in the safety argument need to be filled. These gaps will arise where existing approaches or specifications do not provide all the evidence needed to support the safety argument. This part of the process is likely to be iterative, with further decomposition required where a particular technique does not provide all the evidence required to support an individual claim.

What is needed to fill the gaps will depend on the nature of the gap. This will range from minor adaptation of existing approaches through to development of completely new means of assessment. As a guide, it is likely that major changes to the TAS (e.g. introduction of self-assured separation) will require more extensive development of new approaches, whereas smaller changes (e.g. introduction of a new feature within an existing aircraft) should be achievable through adaptation of existing approaches.

As development of the safety argument is a creative process it is not possible to give a prescriptive guide of how to fill gaps in every case. Instead, Table 4 presents some of the gaps which may be found in existing approaches and gives some guidance on how to go about filling these gaps.

<table>
<thead>
<tr>
<th>Potential Gap</th>
<th>Filling the Gap</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing approach focuses on detailed assessment of designs and does not consider changes at the level of the TAS.</td>
<td>Adopt concept level approach for initial assessment. This could be developed from the scenario-based approach developed and successfully applied by EUROCONTROL (see “Safety Assessment Made Easier” [27]).</td>
<td>Introduction of self-assured separation affects the underlying principles of operation for all domains of the TAS and will therefore require comprehensive assessment at the TAS level.</td>
</tr>
<tr>
<td>Potential Gap</td>
<td>Filling the Gap</td>
<td>Example</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Change introduces a new interface between domains, or significantly alters an existing interface.</td>
<td>Identify who will be responsible for the interface within both domains. Adapt the assessment approach(es) to include this interface and establish dependencies in both directions across the interface. Formalise these dependencies in an assurance contract.</td>
<td>Shift of responsibility for ground de-icing to a new organisation could introduce a new interface where flight crew depends on (staff within) the de-icing organisation to assure that the plane is ice free.</td>
</tr>
<tr>
<td>Assumptions made by existing approaches no longer valid (this may include assumptions about the environment in which the change will operate).</td>
<td>Undertake an impact assessment of the deviations as a consequence of the assumptions made for the change. Where necessary, adapt the approaches accordingly.</td>
<td>Existing certification specification assumes that presence of a pilot in the cockpit provides mitigation for a number of hazardous occurrences; RPAS no longer has pilot in cockpit and therefore needs to introduce alternative mitigations.</td>
</tr>
<tr>
<td>Change beyond the scope of existing specifications.</td>
<td>Undertake a gap analysis of the existing specifications and develop specifications (or performance based requirements) to address the gaps.</td>
<td>The certification specification for light rotorcraft (CS-27 [28]) does not cater for RPAS; JARUS has developed the (CS-LURS [29]) to extend the scope to RPAS of this type.</td>
</tr>
<tr>
<td>Existing approach does not balance safety benefit against risk of failure.</td>
<td>Adopt an approach which fully considers the safety benefit. This can be done by evaluating the inherent hazards within the TAS which the change is intended to mitigate, in order to understand the benefit gained implementing the change; this must then be offset against the disbenefit from the potential failures introduced by the change. Note: in practice it is very difficult to construct an argument to support any increase in risk, even where this is offset by a significant decrease in risk elsewhere – see section 6.3.8.</td>
<td>Where introducing an automated aircraft recovery system (AARS), the hazards resulting from the operation (or failure) of the AARS would be identified by “classic” hazard assessment techniques. However, if the advantage (and raison d’être) of the AARS in preventing crashes is not taken into account, introduction of an AARS could easily appear to be compromising safety.</td>
</tr>
</tbody>
</table>
Potential Gap

Existing approach does not justify the safety for the individual stages of the change.

Filling the Gap

Where the stages are small increments culminating in the overall final change it may be sufficient to undertake the main assessment on the final change and then undertake smaller assessments to look at the differences between the final change and the initial stages. Where each stage represents a change in its own right, it may be necessary to undertake a separate full assessment of each stage as a change.

Example

Change in surveillance technology to be introduced progressively across an area of airspace in multiple stages. Impact during interim stages of having multiple technologies in use needs to be assessed.

Existing approach does not consider all the stakeholders who will interface with the changed (part of the) TAS.

Filling the Gap

Ensure all stakeholders are involved in the assessments undertaken at the TAS level; during these assessments scope the further involvement needed at more detailed level.

Example

Development of airborne / cockpit equipment does not always fully consider the practicality of operating or maintaining the equipment.

Existing approach does not fully consider the impact of the change on all parts of the TAS.

Filling the Gap

Extend existing approach to consider the impact on all parts of the TAS.

Example

The example of the AARS (see above) is also applicable here.

Multiple approval paths not integrated.

Filling the Gap

Define assumptions, scope and context for each approval path; review these against each other and address inconsistencies where these occur.

Example

Development of an RPAS will require (inter alia) type certification of the aircraft, approval of new (ATM) operating procedures and modification of pilot training requirements. These will all need approval by different approvers, but there is no automatic process to show how the development in all these domains remains consistent. The approval plan would need to show how interfaces between these domains are fully managed.

<table>
<thead>
<tr>
<th>Potential Gap</th>
<th>Filling the Gap</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing approach does not justify the safety for the individual stages of the change.</td>
<td>Where the stages are small increments culminating in the overall final change it may be sufficient to undertake the main assessment on the final change and then undertake smaller assessments to look at the differences between the final change and the initial stages. Where each stage represents a change in its own right, it may be necessary to undertake a separate full assessment of each stage as a change.</td>
<td>Change in surveillance technology to be introduced progressively across an area of airspace in multiple stages. Impact during interim stages of having multiple technologies in use needs to be assessed.</td>
</tr>
<tr>
<td>Existing approach does not consider all the stakeholders who will interface with the changed (part of the) TAS.</td>
<td>Ensure all stakeholders are involved in the assessments undertaken at the TAS level; during these assessments scope the further involvement needed at more detailed level.</td>
<td>Development of airborne / cockpit equipment does not always fully consider the practicality of operating or maintaining the equipment.</td>
</tr>
<tr>
<td>Existing approach does not fully consider the impact of the change on all parts of the TAS.</td>
<td>Extend existing approach to consider the impact on all parts of the TAS.</td>
<td>The example of the AARS (see above) is also applicable here.</td>
</tr>
<tr>
<td>Multiple approval paths not integrated.</td>
<td>Define assumptions, scope and context for each approval path; review these against each other and address inconsistencies where these occur.</td>
<td>Development of an RPAS will require (inter alia) type certification of the aircraft, approval of new (ATM) operating procedures and modification of pilot training requirements. These will all need approval by different approvers, but there is no automatic process to show how the development in all these domains remains consistent. The approval plan would need to show how interfaces between these domains are fully managed.</td>
</tr>
</tbody>
</table>

31 This envisages changes subdivided into stages representing different operational states of the final system – i.e. where a change is introduced into operation incrementally.
6.4.3.4 Improving Existing Processes

Consideration should be given to improving existing processes, even where no specific gaps are identified. Whether the benefit justifies the cost depends on the scale of the change, and the degree of improvement made to the processes should be tailored accordingly.

For major changes spanning multiple domains of the TAS, it may be worth considering development of a harmonised framework of development and assessment processes for the change to streamline the processes and make them consistent across the development of the change. Development of such a harmonised framework is recommended by ASCOS WP3 (see D3.6 [5]). In the longer term, it is envisaged that this harmonised framework will be captured in standards applicable across the aviation industry, but this framework would not be available for early implementation of the ASCOS Method.

The proposal from WP3 includes a standards hierarchy which is harmonised across the domains. It also introduces feedback loops so that where faults or failures are traced to shortcomings in the processes, the processes involved can be updated accordingly to address these shortcomings.

Another source of improvement is from lessons learned by other changes to the TAS. Such lessons are often not readily shared between organisations – the reasons for this include lack of funding for the effort involved and concern over releasing commercially sensitive information. However, the argument architect should make use of any information which can be gleaned to streamline the processes adopted.

6.4.4 Determine Stakeholder Involvement

Every change will have a change leader, the organisation which is driving the change. Changes will usually also have other stakeholders. All stakeholders must be identified so that they can be fully involved in the process.

Stakeholders will usually include:

- the applicant who is requesting approval for the change (often this will be the same organisation as the change leader)
- the approver responsible for approving the change
- stakeholders affected by the change, but not directly involved in making it (for example, introduction of an RPAS will require changes to ATM practice and to pilot procedures, and representatives of these domains should be consulted.)
- stakeholders providing a product or service which forms part of the changed TAS (for example equipment manufacturers or telecoms service providers)

It is also important to identify the argument architect who will have responsibility for the developing and maintaining the safety argument.

32 See the recommendation in section 8.3.3.
It is necessary to identify, for each stakeholder:

- the stakeholder’s role in the change
- the stages of the change in which the stakeholder is involved

For complex changes, a stakeholder’s role may vary during the lifecycle of the change, as described in section 4.5.1.

It may be necessary to make multiple applications for approval, and for multiple approvers to be involved, especially where the change spans multiple domains of the TAS. Such changes will involve multiple applicants and approvers.

Roles and responsibilities within the ASCOS Method are discussed further in section 7.

6.4.5 Plan for Approval

Many changes will need formal approval before they are brought into service. Development of the approval path and safety argument modules should be followed by development of an approval plan which shows how the safety argument will be presented to the relevant approver for approval, including the supporting evidence which will be presented. Often, multiple approvers will be involved; in these cases an overarching plan should be developed and submitted to all approvers involved to show how the individual approvals are related – this may need to be supported by further approval plans presenting the details relevant to individual applicants and approvers.

Subdivision of the safety argument into modules should simplify the approval plan as it should be possible identify a single approver for each module; although it will also be necessary to demonstrate how the approver will be assured that the assurance contracts between that module and the rest of the safety argument will be satisfied.

The intention of the approval plan is to explain how the applicant intends to demonstrate that the change achieves the acceptable level of safety, including the evidence which the applicant will present to support the change. Based on the information provided in the approval plan, the approver will undertake their own assessment of the change and determine the level of involvement which they will have in reviewing the change.

The approver may define a specific process to be followed in order to gain approval. The approval plan should show how the approval path developed by the applicant is aligned to that process.

The approver will not give formal approval at this stage, but early involvement:

- gives the approver early visibility of the proposed change
- enables the approver to explain their requirements, which may include:
It is very strongly recommended that the safety argument and the proposed supporting evidence should be agreed between applicant and approver at this stage. If this agreement is not achieved at the start of the development, there is a significant risk that the safety argument and evidence produced by the applicant will not be acceptable to the approver. The applicant may then need to incur significant extra effort (and significant delay) in order to produce the evidence required. At worst, the approver may be completely unable to accept the proposed change.

For complex or wide-ranging changes, it may not be possible to demonstrate that the product or concept is (sufficiently) safe across the whole desired range of operation: in this case initial approvals may be restricted to cover only the range of operations which have been demonstrated to be safe. Where possible, this staged introduction should be planned into the deployment and covered in the approval plan.

The approval plan should include the following elements:

1. **An overall description of the change**

 An overall description of the change for which approval will be sought, its limits and the way it is interfaced with other domains. This description is primarily intended for the experts of the approver. It should highlight relevant aspects such as technical novelties and, where appropriate, relationship with other domains.

2. **The approval path**

 A presentation of the approval path to be followed, including the supporting safety argument, along with a clear indication of the modules of the safety argument which each approver is expected to approve.

3. **Management of requirements**

 The approval plan must list the applicable regulatory requirements (for a certification this would be the certification basis) and related guidance material. It should also put in place a framework for resolution of any issues with the requirements: issues may arise either because aspects of the development are not covered by requirements, or because the development conflicts with existing requirements. The rationale for any such deviations should be underpinned by the safety argument.

33 Where the argument is presented in graphical form (e.g. GSN) there should also be a narrative which explains how the argument is structured.
4. Planned evidence

A list of the evidence which is proposed to support the safety argument (for a certification this would be a means of compliance checklist), and which parts of the evidence will be presented to the approver. This will include evidence to support all parts of the safety argument, including the arrangements for transition into operation (claim 4) and for ongoing monitoring of the change while in operation (claim 5).

5. Programme for production of evidence

This programme ensures that all stakeholders agree over when the evidence is to be produced, taking into account the constraints imposed by the development and validation of the system as well as the approver’s review timescales. This programme may be incorporated into the list of evidence to be produced.

6.4.6 Supporting Information

The previous sections presented the steps in development of the approval path. (As discussed in those sections, development of the approval path is not a single linear pass through these steps and will require a degree of iteration.)

The following sections present supporting information addressing specific issues which may arise in the development of the approval path. In particular, they address:

- Section 6.4.6.1 - how the ASCOS Method described may need to be varied where the change being made is primarily an organisational change, rather than a change to the technical systems within the TAS.

- Section 6.4.6.2 – how standards can help (and hinder) the development of an approval path.

6.4.6.1 Organisational Change

Some changes to the TAS are changes to organisation rather than changes to equipment or processes. For example a change may introduce a new type of licensed organisation, or the change may be to license a new organisation. The change may be introducing a new function within the TAS, or it may be transferring responsibility for an existing function to a new organisation.

The overall focus is still on the change being made to the TAS and how this will affect the safety of the TAS.

The safety argument still needs to address fundamentally the same questions; however, there will be differences in

- the way in which the change is defined

- the structure used to decompose the claims
• the means of analysis

• the process followed by the approver to evaluate the argument and grant approval

In defining the change it will be necessary to define at a functional and performance level what service is being provided by the organisation, and how the existing service provision (if any) is being modified by the change. (For example, licensing a new air operator may introduce new services (of the same type) into the TAS; this may have an impact on existing services by putting pressure on availability of stands or runway slots for existing operators.)

It should be noted that, depending on the service provided by the organisation, the focus may be on safely delivering a particular level of service to support other organisations, rather than on directly delivering a particular level of safety. This is the case where an organisation does not have a direct effect on the safety of the system.

The top level safety argument can be arranged around the same basic claims; the following list provides guidance for how each could be addressed:

• does the change, as specified, achieve the acceptable level of safety? (claim 1) The scope of the functions delivered by an organisation, and the acceptable level of safety (service) to be achieved needs to be specified in regulations. In support of claim 1, the organisation using the ASCOS Method to apply for a licence may need to do nothing more than cite the applicable regulations and explain why they form a complete specification of their operation. In this case their safety argument may have a built-in assumption that the specification has been designed to deliver a function to an acceptable level of safety. A separate application of the ASCOS Method may be used by the authority responsible for the specification to demonstrate that this is the case.

• does the change as designed (claim 2) and implemented (claim 3) achieve the acceptable level of safety? It will be necessary to demonstrate that the organisation can deliver the acceptable level of safety (service) and that any possible failure modes in the service provision have been identified and suitable mitigations put in place as necessary.

• will the transition to the new arrangements be managed safely? (claim 4) Where provision of an existing service is being transferred to a different organisation, how will this transition be managed to ensure that safety is maintained during the transition? Where a new service provider is being licensed (e.g. a new air operator) how will this affect existing operations? (For example, how will any new arrangements be briefed to ground staff so that they know how to accommodate a new air operator within the aerodrome’s operations?)

• how will safety be monitored following the transition? (claim 5) This should be through a combination of the new organisation’s SMS and through the monitoring of the organisation by the authority responsible for oversight of its operation.

• how are the organisation’s interfaces with the rest of the TAS established and managed? An assessment of the organisation’s interfaces with other organisations will be needed. These interfaces
will need to be formally defined and assessed, to ensure that any dependencies between the organisations are fully understood and captured.

Note: the ASCOS Method does not, in itself, prescribe the specific techniques to be followed. As noted previously, WP3 of the ASCOS programme has proposed an approach to harmonisation and improvement of the standards used for safety assessment across the domains of the TAS - see ASCOS WP3 Final Report [5], section 6.3.

6.4.6.2 Role of Standards

Standards are part of a hierarchical regulatory framework which may be viewed broadly in three tiers:

1. regulation and legislation
2. guidance on compliance with regulation
3. industry standards, recommended working practices, guidance

This framework exists in all domains of the TAS although there are minor differences and the boundaries between the tiers can be blurred.

The first tier (regulation and legislation) is the group with which it is mandatory to comply.

The second tier provides guidance, from a variety of sources, on how to comply with the regulation and legislation in the first tier. This includes Acceptable Means of Compliance (AMC) published by EASA, and Alternative Means of Compliance (AltMoC) and other guidance published by other competent authorities.

Material in the third tier includes:

- EUROCAE documents such as: ED-79A / ARP 4754A [30], ED-109A [31], ED-125 [32]
- industry standards such as DO-178C [33] and IEC 61508 [34]

The contribution of guidance (i.e. tiers 2 and 3) to the safety argument for approval is mixed. It can be viewed as an enabler, a constraint or as a tool to provide consistency of approach.

It should also be noted that little of the guidance available directly addresses safety: it is largely focussed on best practice and interoperability.

Application of a standard can provide a clear and concise set of evidence to support the safety argument for a change. The advantage of correct application of established standards is that they can be used to generate a set of evidence which is readily understood and readily applicable to multiple developments. In addition, less training and familiarisation is required, meaning that the evidence can be more readily produced.
However, use of standards can present a number of pitfalls, which should be guarded against. The main pitfalls relate to:

a. the underlying safety argument assumed by the standard

b. the context within which the standard is applied

If the underlying safety argument assumed by the standard is different from the safety argument developed for the change, then the evidence generated will not directly match the evidence required for the change. It is necessary to evaluate the set of evidence to be generated, to confirm whether it will support the safety argument and what gaps will be left; this is especially important where the underlying safety argument is implicit and therefore cannot be directly compared against the safety argument developed for the change.

If the standard is not applied within its intended context, the evidence produced may not be usable, because it may make invalid assumptions about the rest of the change. The importance of context is illustrated by DO-178C and DO-160 which are low level, component related standards, providing only a small part of the overall regulations applying to the aircraft equipment. Higher level standards are used to determine how these low level standards are used – attempting to apply them out of context may produce evidence which is simply unusable.

Another example of incorrect context can arise when assurance levels are used to drive requirements outside their intended scope. Assurance levels are commonly used to index the degree of rigour required in producing the assurance evidence. This is useful but can fail when the level drives criteria that are not appropriate for the safety argument being made. Most commonly assurance levels are used to drive assurance criteria for reliability of the system, in order to deliver a specified level of risk. Where the argument relates to other properties of the system (e.g. timing, accuracy, robustness, predictability), the same assurance levels may not deliver the required result.

In addition, some standards (e.g. IEC 61508) are really “meta standards”, which require instantiation before they are applied. The instantiation process will involve its own assumptions about the context within which the instantiated standard will be applied. Where these assumptions do not hold for the change being made, the evidence generated may not be able to support the safety argument.

6.5 Develop Solution

This section focuses on further development of the safety argument modules (including the supporting evidence) in parallel with the development of the change itself: this is an extension of the initial version of the safety argument, which was developed to support the approval path, as described in section 6.4. The aim of this further development is to ensure that, when the application for approval is made, it is supported by a complete, correct and consistent safety argument including an appropriate body of evidence.

34 It is a recommendation of this document (section 8.3.2) that the safety arguments implicit within existing approval approaches should be documented to support easier development of approval paths using the ASCOS Method.
The ASCOS Method does not attempt to replace existing established techniques, either for the development or the assessment of the change, where these are able to generate the evidence needed to support the safety argument; however the ASCOS Method does provide guidance on adaptation of existing techniques to ensure that the safety argument is complete and fully supported by evidence.

The development of the safety argument follows the general work flow shown in Figure 22, which is further explained in section 6.5.1.

When developing the safety argument, it is important to bear in mind the following key points.

- **System development lifecycle** – The system will be developed according to its own defined lifecycle; this will be different from the workflow of the ASCOS Method as presented in section 3. It is important to align development of the safety argument to the system development lifecycle and to build in appropriate check points as discussed in section 6.5.1.5.

- **Development is iterative** – see section 6.8.

- **Maintenance of the safety argument** – see section 6.8.

As the solution is developed, the safety argument (see Figure 23) will generally be developed from left to right (i.e. from Claim 1 to Claim 5), although a few exceptions are described below. The following sections address the development of the safety argument from two different perspectives. Section 6.5.1 (and subsections) considers the different stages of work flow presented in Figure 22. Section 6.5.2 (and subsections) provides further guidance on development of the individual claims of the safety argument.
There is a potential for overlap (or at least a moveable boundary) between section 5.4 and section 5.5, because both relate to development of the safety argument and it is difficult to define where development of the approval path ends and development of the solution begins. The important point is to ensure that the safety argument is developed and maintained in parallel with the solution and the evidence required to support the safety argument fully is identified and (eventually) generated.

6.5.1 Safety Argument Development Workflow

The following sections describe the activities represented by the workflow in Figure 22, followed by observations relating to iteration and the maintenance of the argument.

6.5.1.1 Entry Point – From Approval Path

The entry point into the cycle shown in Figure 22 will depend on the nature of the change.

Changes which are focussed on a single domain and which have limited impact on the rest of the TAS may already have a fully developed safety argument at the TAS level (see the activities described in section 6.4). Development for these changes may follow the dotted line shown in Figure 22 and proceed directly to domain level development.

Other changes will require significant assessment at the TAS level to take account the overall impact of the change on the safety of the TAS: these follow the solid line to TAS level development.

6.5.1.2 TAS Level Development

Where a change spans multiple domains of the TAS, significant systems engineering and assessment effort is needed at the TAS level to ensure that the overall impact of the change on the safety of the TAS is fully considered. The safety argument must be developed in parallel to ensure that it will support the eventual application for approval.
Initially the development at the TAS level will focus on developing and assessing the specification for the change (i.e. supporting claim 1 – see section 6.4.1) and decomposing this into a design (i.e. supporting claim 2) which addresses the change within all the domains of the TAS, with appropriate assurance contracts agreed between the domains.

Claims 3 to 5 of the safety argument also need to be considered at the TAS level, but to a lesser extent: the majority of the support for these claims comes at the domain level, with the safety argument at the TAS level showing that the evidence at the domain level is correctly integrated to form a complete safety argument covering the whole TAS.

It is critical to ensure that the full impact of the change across the TAS is considered at this level to ensure that all potential safety effects are identified and assessed. (See sections 4.3 and 6.3.4 on the impact of change.) It is also critical to ensure that all relevant stakeholders are involved in the assessments at this level. For example, ATM should be consulted in a change which may affect the behaviour of aircraft (e.g. development of an AARS), even if the ATM procedures will not be directly affected.

Section 6.5.2 provides further guidance on developing the argument for each of the top level claims.

6.5.1.3 Modularisation

Modularisation of the safety argument to align to the domains of the TAS and the organisations involved has already been considered during the development of the approval path (see section 6.4.3.1). However, where significant TAS level development of the solution is undertaken as described in section 6.5.1.2, this modularisation should be revisited. This should be done:

- to ensure that the modules still represent appropriate subdivision of the solution – it may be necessary to introduce new modules, or modify module boundaries to reflect the TAS level development
- to ensure that the assurance contracts still fully capture the dependencies between modules, including the context and caveats relevant to the claims in the modules
- to identify whether additional modules should be created to encapsulate details of the safety argument.

This modularisation affects all claims of the safety argument – in each case the claims made at the TAS level will be decomposed into claims within the individual domains, with agreed assurance contracts between them. (See section 6.5.2 for further guidance on each of the claims.)

The initial modularisation (especially of Claim 2) will be in parallel with the systems engineering functional decomposition of the solution into domains.

A primary use of modularisation is to separate the safety argument into domains; however, modularisation can be used for other purposes, as explained in section 5.3.3. The principles remain the same: to subdivide the safety argument into modules which are easy to develop and maintain as separate units. Care is needed to
clearly identify which modules fall into which domains, and therefore to identify which modules are required to support the approval in each domain.

6.5.1.4 Domain Level Development

Development of the safety argument continues within each of the domains of the TAS.

Initial development of the safety argument at domain level will focus on supporting claim 2, showing that the design of the change is capable of delivering the acceptable level of safety in each of the domains and that the assurance contracts within the domains are developed and satisfied. This builds on the initial work at TAS level supporting claim 1, which defined the safety requirements on the TAS and the modularisation which apportioned these to domains.

Assessment within the domain will follow existing techniques where possible (see discussion in sections 6.4.2 and 6.4.3). These may need to be adapted/extended where the change introduces concepts not envisaged by existing standards. Common issues with existing techniques were identified in section 6.4.3.3.

The argument supporting claims 3–5 will also be developed at domain level - see section 6.5.2. Much of this will take place later, once the design is further developed and the solution approaches implementation and deployment. However these claims should still be considered, even in the early stages of the development. In particular, ASCOS D3.5 [5] identifies the importance of early identification of possible precursors (supporting the monitoring required in claim 5), during the safety modelling of the TAS, which will usually be conducted in support of claim 2.

It is essential that the evidence needed to support the safety argument is clearly stated, and that the assessments take this into account; otherwise there is a risk, especially where practitioners are used to applying the “standard” techniques, that the evidence produced will not support the safety argument. (See section 6.5.1.5 on evaluation of the evidence.)

It remains important that all stakeholders are considered throughout the development of the argument. At domain level, this is partly addressed through the assurance contracts between domains. However, the existence of a contractual relationship should only be seen as formalising the requirements: it is no substitute for ongoing engagement with the other stakeholders to ensure that the assurance contracts match the needs of the safety argument and are correctly understood and accepted on both sides of the interface.

6.5.1.5 Evaluation

At regular intervals, it is necessary to check that the evidence generated by the assessment processes provides the expected support for the safety argument, that this support is complete and that the evidence respects the context of the claim which it is supporting. It is also necessary to check that the safety argument remains appropriate to the change. These checks, which should be carried out by the argument architect, are necessary because development of changes is a creative process and it is possible (or even likely) that the development of the change will stray away from what was expected when the safety argument was initially constructed. It is
also likely that the assessment will generate caveats which need to be addressed further, perhaps through modifying the solution or introducing limitations on its application to the TAS.

Large programmes are often divided into a number of lifecycle stages\(^{35}\), with “stage gates” between stages. The programme must be able to demonstrate that certain criteria are met before it can proceed to the next stage of the lifecycle. The stage gates may be an appropriate point at which to evaluate the state of the development and the safety argument and to take corrective action as necessary.

Where significant issues are encountered which affect the definition or design of the change or the structure of the safety argument, evaluation should not be delayed until the next stage gate, but should be undertaken immediately. However, it is important to base the evaluation on a mature and stable understanding of the system and not on a speculative modification which may be proposed. (Although the impact of a speculative modification on the argument may, in itself, be a significant factor, on whether the modification is adopted.)

Table 5 lists some key questions which can be used to perform this evaluation, along with some of the actions which may need to be taken. These questions should be used as a guide – further questions should be introduced as required by the specific argument for the change. Many of these evaluation questions will form part of a good systems engineering process; but they are repeated here due to their critical impact on the development and maintenance of the argument.

Following the evaluation stage, there is a choice of path (see Figure 22) depending on the findings of the evaluation process: where alterations affect the TAS level, workflow should return to “TAS level development” (see section 6.5.1.2); other alterations are more local (e.g. modifying the argument within a domain), involving a return to section 6.5.1.4. The workflow described here should be followed (iteratively as necessary – see section 6.8) until the development of the solution is complete, there is a complete safety argument supporting the solution and all the evidence required to support the safety argument has been produced. The ASCOS Method then proceeds to the “Obtain Approval” step (see section 6.6).

Note: even where a change jumps “straight in” to domain level development (see section 6.5.1.1) it may still be necessary to return to TAS level development and modularisation, depending on the nature of the alterations required following the evaluation stage.

\(^{35}\) E.g. concept design, detailed design, implementation, verification.
<table>
<thead>
<tr>
<th>Evaluation Question</th>
<th>Answer Requiring Action</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have the stakeholders’ requirements altered since the change definition was developed?</td>
<td>Yes</td>
<td>Review the definition of the change and update as necessary so that stakeholders’ requirements are met. Often it will not be possible to meet all stakeholders’ requirements and it is necessary to make decisions about which requirements will be met and which will be “rejected”.</td>
</tr>
<tr>
<td>Has the definition of the change itself been varied? (For example, due to variation of stakeholder requirements as discussed above.)</td>
<td>Yes</td>
<td>If the change definition is modified, then the safety argument will need modification to fully support the new change definition. This will include revisiting the modularisation and assurance contracts to check whether they are still sufficient to support the new safety argument.</td>
</tr>
<tr>
<td>Does the evidence produced by the assessments support the claims which are being made? (In the end, will the change be acceptably safe, and be demonstrated to be so?)</td>
<td>No</td>
<td>The corrective action depends on the nature of the deficiency. It may be sufficient simply to generate further evidence; if this is not feasible, an alternative safety argument may need to be constructed. However if the evidence actually contradicts the safety argument the solution may need to be altered.</td>
</tr>
<tr>
<td>Is it (still) feasible to produce the evidence called for to support the safety argument?36 (At early stages of development, the evidence will not actually have been produced, but the argument architect should still evaluate whether it is feasible to produce the evidence, given the development so far.)</td>
<td>No</td>
<td>Where it becomes apparent that it will not be possible to produce the evidence called for by the argument, an alternative approach (or even an alternative solution) should be sought, depending on the expected deficiency in the evidence.</td>
</tr>
<tr>
<td>Does the argument within the domain continue to satisfy the requirements placed upon it in assurance contracts?</td>
<td>No</td>
<td>The effect on the other domain must be considered; the safety argument in that domain should be modified accordingly and a renegotiated assurance contract should be established37.</td>
</tr>
</tbody>
</table>

36 This question is related to the previous one, but looks forward to evidence to be produced in the future.
Evaluation Question	Answer Requiring Action	Corrective Action
Does the safety argument within the domain rely on other domains in ways not already captured in assurance contracts? (During development of the solution, detailed assessments will reveal further assumptions about (or requirements on) other domains.) | Yes | It is necessary to establish whether the other domain can support the safety argument in the way required. Explicit renegotiation of the assurance contract is needed, to ensure that it is agreed on both sides\(^{17}\).

\(\text{Table 5: Evaluation of the development of the argument}\)

6.5.2 Guidance on the Individual Claims

All the top level claims of the safety argument need to be considered, both at the TAS level and the domain level.

6.5.2.1 Claim 1: Change specified to achieve an acceptable level of safety

This claim focuses on what is being changed (e.g. introduction of a new concept or service), without considering any of the internal details of the change. It is important to consider the change in terms of high level functions and performance, operational behaviour and modes of operation – including consideration of all the normal, abnormal, degraded and emergency conditions which may occur.

For example, in a change to flight paths into an airport, this would consider the paths which the aircraft take through the airspace, without considering the tasks or equipment employed to guide them to these paths.

It is critical to ensure that the change (in terms of its design intent) is specified to deliver an acceptable level of safety, before considering how possible failures may erode that level of safety. Many changes in the aviation system are introduced with the explicit intention of making the system safer: for example, the Automated Aircraft Recovery System (AARS) proposed as one of the ASCOS case studies (see ASCOS D4.5 [36]). It is critical to ensure that the intended improvements are achieved by the change and that the change does not have an unacceptable (knock-on) effect in other areas of the TAS. (Trade-offs between domains will not usually be acceptable and would need to be robustly and quantitatively supported – see section 6.3.8).

The assessment at this level focuses on the inherent hazards\(^{38}\) within the TAS and the impact of the change on these hazards – in all domains. The assessment should include consideration of the effect of other changes which may be made to the TAS during the lifetime of the change being developed. The FAST/EME1.1 methodology (see ASCOS D3.6 [5]) provides a way to evaluate these changes and identify potential hazards.

\(^{17}\) It is easy to make assumptions about another party’s activities and proceed without confirming these assumptions. If the other party’s activities significantly deviate from the assumption this can leave a significant gap in the argument, which may lie unrectified until a very late stage in the development when it becomes expensive to fix.

\(^{38}\) These are the hazards which exist anyway in the TAS (e.g. CFIT, LOC-I), and are not a result of introducing the change.

within the TAS; this methodology has already been applied and the results are available [25]. At this level, some consideration of the introduced hazards\(^{39}\) is also possible, but this will be limited to failures at the functional level: assessment of the causes of these failures can only be fully developed when change is being assessed at design and implementation levels.

The (change in) risk resulting from the change is assessed in order to determine whether this change in risk is acceptable. (This assessment should take into account all hazards which have been identified – both inherent hazards and introduced hazards, and should be repeated when further hazards are identified.) Where the change will not achieve the acceptable level of safety, it may be varied (e.g. risk mitigations added) in order to improve safety. If it is not possible to achieve the acceptable level of safety through variation of the change (including the addition of mitigations) then the change must not be implemented.

A possible means of assessment at this level is the scenario based approach described in the EUROCONTROL document “Safety Assessment Made Easier” [27]. The advantage of this approach is that it makes a full consideration of how the change will be used within the TAS and considers (initially at a high level of abstraction) the impact of the change on the inherent hazards. Through a variety of techniques this then allows requirements to be developed at a lower level and then flowed out to the individual domains. This approach is based on, and thus consistent with, the underlying safety argument introduced in section 5.

Whatever means of assessment is used, the important objective here is to develop evidence to support the claims that (at the TAS level) the change, if it meets the specified requirements, will achieve the acceptable level of safety.

The output supporting this claim may include failure models of the system (e.g. ESD, FTA), although causal information will largely be absent because the internal design of the system is not considered in this claim. Such models are usually developed from existing models, for example the ASCOS Safety Risk Model (see D3.6 [5]), derived from the CATS model\(^{40}\). Whatever models are used as input, it is critical to understand the scope and context in which they are developed and any limitations implicit in their use. In particular, it is important to consider:

- **completeness** – Does the model represent all the scenarios relevant to the change, across all relevant domains?
- **currency** – Is the model up to date, and does it consider all the envisaged changes which may be made to the TAS during the lifetime of the change under consideration?
- **combination of predictions across domains** – Does the model attempt to compare safety targets between domains? If so, is this approach agreed with all the authorities involved? (See section 6.3.8 for further discussion of this point.)

\(^{39}\) These are the hazards introduced by the change.

\(^{40}\) Development of the CATS model was funded by the Dutch government and led by Delft University of Technology.
As part of the development of Claim 1, the following should be developed and documented:

- the safety objectives for the change;
- the safety requirements which specify what the change is required to do (not how it does it) in order to achieve the safety objectives (this should include functional requirements relating to the intent of the change, as well as performance levels which need to be achieved in order to achieve the acceptable level of safety);
- the context within which the safety requirements will be delivered;
- the degree of assurance required that the change will meet its requirements;
- any additional functionality requirements or assumptions to capture any external means of mitigating the consequences of hazards
- justification that appropriate processes were used to derive these outputs and that they were applied competently.

The argument supporting claim 1 will be made predominantly at this overall TAS level, albeit that the impact within each domain of the TAS must be fully considered, using the safety targets relevant to each individual domain.

Note: the safety argument cannot be finalised until it has been shown that the individual changes within the domains will meet their safety requirements, otherwise the top level safety requirements will have to be re-apportioned to achieve an implementable solution.

6.5.2.2 Claim 2: Logical design satisfies specification and is realistic

This claim focuses on demonstrating safety at the next level of detail. It is here that the assessment looks “inside the box” of the change and considers how component parts of the change will be designed and interact: it is at this level that the different domains of the TAS are considered in detail, as well as the interactions and assurance contracts between them.

Assessment examines whether the design works as intended under all expected normal and abnormal conditions of the system.

Safety assessment also considers how the elements of the logical design satisfy the overall specification of the change. Failure identification and analysis considers failures of the design elements to deliver their intended function and failures caused by (unintended) interactions between the elements of the design. All such failures are evaluated, by building appropriate models of the system, to determine their effect on the safety of the change and ultimately of the TAS. Where failures lead to the acceptable level of safety not being achieved, additional requirements need to be introduced to achieve the acceptable level of safety. Existing models (e.g. ASCOS SRM) can be useful in analysing these causes and effects, where the model covers the parts of the system being changed. However, generic models become less useful as the assessment extends deeper within
the system because the nature and frequency of failures will be specific to the technology involved. The comments made under Claim 1 (see section 6.5.2.1) on ensuring the validity of any models used are equally applicable here; this is even more relevant where novel solutions are introduced which may not be considered in existing models.

As a result of the assessment, a further level of safety requirements is derived for each element of the design, defining what each design element has to do (both functionality and performance), in order to meet the overall (TAS level) safety requirements for the change. Assurance requirements are also derived for each design element to define the level of assurance needed that the design elements will meet their requirements.

Interactions between elements of the design are critically important. Suitable techniques should be used to identify and assess these interactions. Where interactions cross boundaries between domains, they should be captured in assurance contracts agreed between all parties involved.

As described in previous sections, existing techniques and approaches should be considered wherever they are sufficient to deliver the evidence required to support the claim. However, it is also important to consider the advantages of harmonising approaches across the domains, especially on larger changes which span multiple domains. (See section 6.4.3.4.)

Note: The implementation is not defined at this stage. However, it does need to be feasible to implement the logical design, and at acceptable cost. Some of the factors which need to be considered are as follows.

- Can equipment / procedures meeting the requirements be produced?
- Can the modifications be implemented / installed to existing equipment?
- Is there a way to transition from current operations to the new state?

The main output of the safety assessment is as follows:

- design Safety Requirements for each element of the logical architecture, as necessary to provide the functionality and performance specified in the specification stage
- Safety Assurance Requirements for each element of the logical architecture, as necessary to satisfy the level of assurance specified in the specification stage
- additional Design Safety Requirements (or assumptions, where appropriate) to capture any internal means of mitigating causes of introduced hazards
- assurance contracts defining the dependencies between domains which need to be satisfied in order to support the argument.

6.5.2.3 Claim 3: Implementation of the logical design is complete and correct

This **claim** focuses on ensuring that the implementation of the designed system meets the requirements. This includes the direct requirements on the individual parts of the system as well as ensuring that the assurance
contracts between different parts of the design are met and that sufficient levels of assurance are generated that the implementation is correct.

The principle aim of safety assessment here is to demonstrate by a combination of analysis and testing, that the (as-built) system\(^{41}\) implementing the change meets the safety requirements. Depending on the complexity of the design it may be necessary to further derive a detailed set of safety requirements for the system design; these are obtained by allocating the Design Safety Requirements for the logical design (derived in the design stage, as above) on to the solution architecture.

This claim also derives detailed Safety Assurance Requirements for the solution architecture and shows that these are met. It is at this stage that the change leader often encounters a major problem: test-based techniques are often unable to demonstrate, to a sufficient level of confidence, that the required safety integrity properties of the system have been satisfied. An assurance based approach is often followed to provide this demonstration. (One such approach is defined in the UK CAA SRG CAP670 [37] and the associated AMC [38] for the SW01 requirement.)

Although a large proportion of the work to support claim 3 will be within the individual modules, it is also necessary to consider the assurance contracts between modules. It is likely that some areas will be discovered where the existing assurance contracts are not met. In addition, the implementation will make further assumptions about the system and its environment which need to be captured and agreed between the domains. These areas need to be reviewed (see the evaluation process in section 6.5.1.5) and updated accordingly.

For changes where equipment is being adapted or developed, the evidence supporting this claim will largely be provided by the equipment manufacturer. The argument architect will need to review the evidence provided to ensure that it does indeed support the safety argument as required.

6.5.2.4 Claim 4: Transition to introduce change is acceptably safe

This claim focuses on ensuring that the change can be safely introduced into operational service. This is done by showing that

- the fully proven change is ready to be brought into operational service
- the process of introduction of the change does not adversely affect the overall safety of the TAS (e.g. does not cause an unacceptable break in provision of ATM services)

The following aspects need to be considered.

- **Preparation for operation**, including publication of operational and engineering procedures, provision of resources (people, equipment spares, maintenance facilities etc) and training of operational and technical personnel

\(^{41}\) Remembering that the system comprises people, processes and equipment.
Co-ordination with all parties affected by the change, which may include publication of the details of the change

Implementation of arrangements for ongoing management of the changed elements of the TAS; where the change is in the context of existing service providers, arrangements will already be defined in their management systems, but these may need to be modified to cater for the changes being implemented

Assessment of the switchover process to identify any hazards associated with the switchover process and to introduce any mitigations required to ensure that the safety risk remains acceptable at all times; these mitigations will be part of the arrangements for the switchover

Arrangements for the switchover process for introduction of the change - switchover procedures, allocation of responsibilities and the training / briefing of all personnel involved. Where appropriate this should also include fallback / contingency arrangements in case of failures during the switchover process.

For some changes (e.g. introduction of a new replacement part) this switchover will be simple and low risk. However for more complex changes (e.g. changing the means of surveillance within a particular airspace), especially where multiple stages are involved, the switchover itself is a risky process. These risks should be fully assessed, using a process similar to that used to assess the change itself.

This assessment should include full consideration of the human element of the system and their ability to handle the changes. Where changes are wide ranging it may be necessary to stage them so that the operators do not experience a level of change beyond what they are able to handle.

Another issue to consider is where (for example) the change is deployed over a period of time such that some parts of the system are operating to pre-change requirements / procedures etc, while others are operating to the post-change requirements / procedures etc – and to ensure that this does not introduce any unacceptable risks.

Although much of the safety argument for this claim will be at the level of individual domains, it is also critical to ensure that the process is co-ordinated and assessed at the overall TAS level. For example, where a new feature / function is being introduced in aircraft operations, it is necessary to ensure that flight crew are properly trained to handle this feature, that crew of other aircraft are properly informed of any effects on their operations, ATM people are properly trained. All must happen before the operations are introduced so everyone knows how to handle the change, but not too long before so that those involved have not forgotten their training before the change happens.

Primary responsibility for this part of the safety argument lies with the operator seeking to introduce the change.

42 including safety management, change management, configuration management
6.5.2.5 Claim 5: Safety monitoring in operational service

Despite all the assessment prior to entry into service, it is impossible to know exactly how the change will perform in operation. Assumptions have been made about performance of various elements, about interactions with other parts of the TAS; furthermore later changes may be introduced which have an (unintended) effect. Thus it is necessary to monitor the change to check whether it is safe in service. Where problems are found these need to be assessed and then rectified.

To support this claim, it is necessary to show that:

- continuous safety monitoring (CSM) collects the appropriate metrics to confirm the results of the safety assessments undertaken to support the earlier stages of the safety argument
- processes are in place to report and investigate all safety-related incidents and to ensure that appropriate corrective action is taken in adjusted mitigation/contingency plans
- processes are in place to carry out safety assessment of any interventions (e.g. maintenance) to ensure that the associated risks are known and acceptable (extending/limiting a list of potentially affected precursors for a priori risk assessment).

The assessment to support this claim should (at least) start during the development of the solution, and not be left to the end of the development. In particular, the identification of metrics to collect in continuous safety monitoring (CSM) may be existing ones already measured within the system or they may be new ones. Identification of the metrics required will be driven by the development of risk models for the change, as developed in support of claims 1 and 2. The ASCOS tool for CSM (see ASCOS D2.5 [7]) can form a useful baseline for the metrics to be collected, supplemented as necessary by further indicators derived from the risk models specific to the change.

When initially submitted for approval, the safety argument supporting this claim necessarily takes a different form from the safety argument for the previous claims, because it is about demonstrating that processes are in place, rather than demonstrating that evidence has been collected. In time this is then substantiated with the evidence collected through CSM.

Responsibility for the safety argument necessarily transfers to the operator (in collaboration with the approver) as they are the ones ultimately responsible for the safety of the system in service. The operator will need support from manufacturer, especially in the analysis of incidents and understanding the impact of those on the safety of the system.

6.6 Obtain Approval

Once the solution and safety argument are fully developed, it is necessary to obtain approval(s) from the relevant authorities before the change is placed into service. This approval will be based on the approver’s acceptance of the safety argument, the applicable regulations and supporting evidence presented by the
applicant. Note: the applicant remains primarily responsible to satisfy themselves that the change is safe (see section 6.4) irrespective of the level of scrutiny from the approver.

The role of the approver, and the purpose of review by the approver is discussed further in section 7.1.3. This section provides guidance to the approver on how they can apply risk-based principles to:

- selection of changes to review – section 6.6.1
- the review process itself – section 6.6.2

It is very strongly recommended that the safety argument and the proposed evidence to support this argument should have been agreed between applicant and approver when the approval plan is presented (see section 6.4.5). If this agreement is not achieved at the start of the development, there is a significant risk that the argument and evidence produced by the applicant are not acceptable to the approver. The applicant may then need to incur significant extra effort (and significant delay) in order to produce the evidence required. At worst, the approver may be completely unable to accept the proposed change.

In addition, a schedule of reviews should be agreed between applicant and approver when the approval plan is presented (see section 6.4.5).

Where a change is split into multiple stages, the approver may still insist on reviewing the safety argument (and supporting evidence) for all stages before granting any approvals in order to avoid the situation where a change is partially implemented, but unable to be completed due to lack of adequate argument or evidence for the later stages.

Where a change needs approval by multiple authorities, approval from all relevant approvers will be needed before the change is placed into service.

6.6.1 Selection of Changes for Review

The aim of review by the approver is to assure that the acceptable level of safety is achieved. An approver may be selective as to which changes it reviews in detail before granting approval. This section considers the factors that should affect the selection of changes for review. (In section 8.3.9, a recommendation is made for further research in this area.

Table 6 outlines the potential safety consequences of the decision whether or not to review a change. These consequences should be borne in mind when developing a selection process for which changes to review.
The decision on whether to review a change should be based on:

- the negative safety consequences (A) in the case of the worst possible accident
- the (perceived) probability (B) that the safety argument presented will be flawed such that an unsafe change is proposed

Any evaluation of these parameters will always be a rough estimate: it is important to err on the side of caution when making these estimates.

The parameters should be estimated based on:

The term “true level of safety achieved by the change” is used here to distinguish from the level of safety perceived by the applicant (as presented in the safety argument) and by the approver.
- the approver’s understanding of the likely challenges (C) of the proposed change
- the approver’s knowledge of the applicant’s organisation, including
 - their technical capability (D) as relevant to the specific change
 - their organisational culture (E) as it affects their ability to withstand pressure to make unsafe changes

In turn, these are informed by:
- the change definition
- the approval plan, including the outline safety argument presented therein
- the approver’s knowledge of aviation safety

Figure 24 illustrates how these factors influence each other.

For example, an organisation may have previously demonstrated strong capability to develop a new fixed wing aircraft, but have no experience with rotorcraft.
6.6.2 Reviewing the Safety Argument

This section provides an overview of the process followed by the approver to evaluate the safety argument being made to support the change.

1. **Familiarisation**: The approver gains an understanding of the nature and scope of the change including the stages of implementation. The approver also gains an understanding of the structure and organisation of the safety argument, including how it will be structured to support the individual stages. As part of this process, the approver identifies and records where key topics are addressed to support later assessment activities. As a result, the approver forms a view of the scope and adequacy of the safety argument. If the approver concludes that the safety argument is likely to be insufficient, the applicant should be informed so that the approval plan can be updated accordingly.

2. **Identify the risks**: The approver should identify the greatest risks associated with the change in order to prioritise the review effort appropriately. This is determined from the approver’s knowledge of:
 - the applicant
 - the services it provides
 - the proposed change
 - the other organisations involved

For the lowest grades of risk, the assessment inherently undertaken during Phase 1 may be sufficient to judge the safety of the proposed change, so that no further review is required.

3. **Review safety argument for the changed system**: The approver chooses how to structure and target the assessment to confirm whether the safety argument is sufficiently complete and supported by sufficient evidence to show that the risks which are of greatest concern to the approver are sufficiently mitigated. If, during the assessment, the approver determines that the initial planning was based on an incorrect understanding of the risks associated with the change, then the risks are reassessed (Phase 2) and the assessment plan is revised. The assessment then resumes according to the revised assessment plan.

4. **Determine credibility of planned transitions**: In this stage the approver assesses whether the sequence of transitions planned to implement the change is credible, by considering:
 - the feasibility (not safety) of the planned transitional activities that implement the change
 - whether the planned transitional activities are sufficient to implement the stated change
 - whether the prepared parts to be inserted into the TAS will be available
 - whether the necessary resources to undertake the change will be available
 - whether there is an adequate safety analysis of the transitional activities
 - whether the criteria to support transition decisions are adequate

45 This part of the review is focused on the safety argument about the final state when the change is complete; review of the transitional stages comes later.
46 The amount of effort required to assess the transitions will depend on their complexity.
This will also allow the approver to build an understanding of the transitional activities to support the next phase of the assessment.

5. **Assess safety argument for transition**

In this stage, the approver assesses claim 4 of the argument, which relates to transition from the current state of the TAS to the changed state (i.e. when the change is completely implemented). For each stage of the transition, the approver will need to confirm that:

- the individual stage is specified to deliver the **acceptable level of safety**
- a full hazard analysis has been undertaken for the stage to demonstrate that the risk from failures is adequately mitigated
- the evidence adequately supports the argument
- appropriate plans are in place and match the full scope of the stage (including installation, commissioning, transition and recovery)
- the transition activities themselves have been fully assessed and any risks adequately mitigated
- any uncertainties relating to the implementation of the stage have been identified and addressed as appropriate

Should any part of the assessment result in significant new information about the risks associated with the change, the appropriate parts of the earlier assessment should be repeated.

6. **Report and address findings:** The approver evaluates the concerns recorded during the evaluation to determine their significance in the context of the overall safety argument, and the applicant is notified of the results. The approver must be satisfied with all revisions made to the safety argument and supporting evidence to address any identified deficiencies before the change may be implemented.

Where the stages of the change are complex and separated in time, the stage-specific assessments may be undertaken separately for the individual stages. This may be driven by the availability of the evidence to support the argument for each stage. Approval would then be given independently for the stages as the appropriate assessment is completed.

6.7 **Operational Service**

Once the change has been granted approval, it can be placed into operational service:

- in accordance with the process and timescales agreed with the relevant approvers when they granted approval
- respecting any limitations placed on the operational use, either by the safety argument or by the approval granted

Where a change is staged, each stage must only be placed into operational service once it has gained the appropriate approval.
When the change is placed into operational service, the *modules* of the *safety argument*, and especially any *limitations*, effectively become part of the relevant operator’s SMS. For example the *module* relating to operation of a new aircraft would become incorporated into the air operator’s SMS. However they would still rely on the *assurance contracts* with other *modules* of the *safety argument* continuing to be fulfilled. It is likely that these *assurance contracts* will include dependencies on:

- the maintenance organisation to maintain the aircraft according to the relevant manuals
- the manufacturer to provide updates on component performance
- the crew licensing regime to train flight crew on specific features of the aircraft

The *safety argument* should also be retained to support any further adaptations. Where a change does not directly lead to operational service (e.g. certification of a new aircraft), the context and caveats of the *safety argument* must be included in the relevant certificate. This is necessary so that the *applicant* placing the item into operation can ensure that the item is used in accordance with them.

Monitoring and process improvement must then be undertaken in accordance with Claim 5 of the *safety argument* (see section 6.5.2.5). *Note*: development of monitoring procedures and KPIs should take place during development as discussed in section 6.5.2.5. Where the *change* is operated by a single operator, this monitoring effectively becomes part of the operator’s SMS, and the operator becomes the ‘de facto’ *argument architect*. It should be noted that some of the inputs for the monitoring may be indicators measured by industry bodies other than the operator. It is essential for accurate safety monitoring that an appropriate level of information is freely available across the TAS.

Where the monitoring indicates that the operation of the changed part of the TAS may not be as safe as required, then the operator, in conjunction with the relevant authorities, must decide how to address this situation. Initially this may be through more targeted or intrusive monitoring of the system to provide a more detailed assessment. If necessary this is then followed by further changes to the system to ensure the *acceptable level of safety* is achieved – these *changes* would become a new application of the ASCOS Method.

Where different elements of the *change* are operated by different operators, there may be no single owner for the argument. Furthermore, the *TESG* set up to implement the *change*, may be disbanded once the *change* is complete. The arrangements for monitoring such *changes* should be appropriately covered within Claim 5 of the argument, and may require appropriate collaborations to be set up within the TAS to ensure that the monitoring, and any corrective action, is carried out adequately.

6.8 Managing Variation and Iteration

Although the steps of the ASCOS Method are shown as a linear progression, it is likely, especially with a complex change, that iteration will be required. It is crucial to ensure that this iteration is properly managed so that the approval path and safety argument remain consistent with the development of the change, allowing the applicant to present a *safety argument* and supporting evidence which are capable of being *approved*.
Development of the argument is iterative for three main reasons:

- **The definition of a change may be varied during the lifecycle of the change** – this is especially true on large programmes. For example:
 - decisions may be made during development to descope the change because part it is infeasible or uneconomic
 - additional requirements may be imposed – for example the need to cater for a new aircraft type

- **Alterations may arise internally** – in the process of developing the change it is likely that variations will be needed at multiple levels of the change definition, design and implementation: this may be due to discovering that a particular approach will not work, or is not cost effective, or that the evidence required to support the safety argument cannot be produced.

- **Emerging implementation details give rise to the need for further assurance** – for example, a decision to use a particular type of equipment or process may introduce new hazards which need mitigation through the introduction of further safety requirements.

Any such changes must be evaluated for impact:

- on the later stages of the process
- on the approval path and related safety argument

The impact of all such variations both on the solution itself and on the safety argument, must be properly managed in a controlled fashion so that the solution and safety argument remain consistent throughout the lifecycle. This includes examining the impact of variations on development and assessment which has already taken place, and repeating elements of these as necessary. For example, introduction of a new equipment item or process may generate new introduced hazards which need mitigation through introduction of further safety requirements.

It is crucial to maintain\(^\text{47}\) the approval path, safety argument and approval plan throughout the development lifecycle, modifying them where necessary to remain consistent with the change (both with the definition of the change and with the solution developed) and with the environment\(^\text{48}\). This also includes modifications to resulting from the evaluation process (see section 6.5.1.5). This may seem obvious, but it is easy for the approval path, safety argument and approval plan to be developed once at the beginning of the lifecycle and then shelved. If they are not maintained during development, the inadequacies\(^\text{49}\) which develop will not be noticed until the end of the process, when they are very difficult to rectify.

\(^{47}\) In this context, “maintain” means “keep up to date with the change to which it applies”.

\(^{48}\) Usually a baseline of applicable regulation is agreed at the outset. However it is possible for new regulations to become applicable within the timescales of the change: such developments must be taken into account and their application to the change agreed with the relevant approvers.

\(^{49}\) These may arise due to variations in the solution or due to shortcomings in the evidence produced to support the safety argument.
It is also crucial to ensure that any modifications to these items are communicated to all affected stakeholders, especially where assurance contracts are affected by the change. Depending on the level of detail of the change, the corresponding parts of the approval plan (see section 6.4.5) may also need to be updated and resubmitted to the relevant authorities to ensure that they remain aware of the approach which the applicant is taking and the evidence which will be produced. The level of variation which merits representation to the approver will be a matter of judgement: the applicant should bear in mind that the reason to inform the approver is to ease the approval process – so if the variation is likely to affect the way in which the change is assessed by the approver, then it is worth making them aware so that they can plan their approval accordingly.
7 Roles and Responsibilities

This section describes the roles and responsibilities involved in applying the ASCOS Method. This is described at an organisational level, however it should be noted that for typical changes different parts of an organisation may take the different roles.

Section 7.1 identifies the roles involved. Section 7.2 shows how these roles are involved at the various stages of the process.

7.1 Roles required within the ASCOS Method

7.1.1 Change Leader

The change leader is the organisation with the primary motivation to make the change to the TAS happen. This organisation will lead the application of the ASCOS Method with support from other organisations as indicated in section 7.2.

The change leader is responsible for developing the overall plan for approval of the change: through the TESG (see section 7.1.5) the change leader will work with the other stakeholders to ensure that the change is developed in a way which is coherent across the whole TAS.

The change leader is likely to be the organisation introducing the change into service and therefore likely to also be (one of) the applicant(s). However, they may not be the only applicant: for changes affecting multiple domains, there may be multiple applicants (e.g. aircraft manufacturer, air operator, ANSP).

Where a change relates to the development and introduction of a new product, especially where a new set of industry-wide requirements is being developed for the product, the role of change leader may transfer between organisations during the lifetime of the change. For example, the requirements (which may be in the form of a regulation) may be developed by an industry-wide group led by a steering committee drawn from interested organisations (i.e. the TESG – see section 7.1.5). The development of specific products (e.g. a specific type of RPAS) may then be led by an individual manufacturer, resulting in the issue of a type certificate. An individual operator will then be change leader for the introduction of individual aircraft into service. This process could, in fact, be viewed as three separate applications of the ASCOS Method, with three separate change leaders.

Examples:

- development of a new aircraft, culminating in application for a type certificate would be led by the aircraft manufacturer
- introduction of the aircraft into operation would be led by the aircraft operator, as part of its AOC.
- development of a new surveillance system would be led by the system manufacturer
- introduction of a new surveillance system into operation would be led by the ANSP
• development of a significant new concept (e.g. self-assured separation) would involve multiple domains and would need to be led by a group (see TESG below) drawing representation from all relevant parts of the industry

For a large part of the lifecycle of the change, the change leader will also be the argument architect. However, once the change enters operational service, the responsibility for the safety argument may transfer to another party, hence the use of separate terminology to clarify this.

7.1.2 Applicant

The applicant is the organisation which is applying to the approver for approval.

The applicant will be responsible for a module of the safety argument – the module which contains the part of the safety argument relevant to the applicant’s domain. The applicant is responsible for ensuring that the safety argument within this module sufficiently supports the claim that, within this domain, the change achieves the acceptable level of safety. The applicant is also responsible for ensuring that the module satisfies any assurance contracts between it and other modules. (An applicant may be responsible for multiple modules if their activities span multiple domains.)

For changes involving only one applicant, the applicant will also be the change leader. However, for changes where multiple approvals are required, there may be multiple applicants within the separate domains where approval is required.

For example, where the change is for introduction of an RPAS into operation by a specific operator in a particular airspace:

1. certificates of airworthiness for the individual aircraft
2. approval for the operator to operate the aircraft
3. approval for changes to the ANSP procedures to accommodate the operation of the RPAS
4. approval for changes to maintenance procedures to accommodate maintenance of the RPAS

It is likely that the air operator will be the change leader and the applicant for items 1 and 2. However, there may be other applicant for the other items. (Note: it is assumed here that the RPAS has already obtained a type certificate; the manufacturer is likely to be applicant and change leader for that part of the process.)

7.1.3 Approver

The approver is the organisation responsible for approving the change. A change may involve multiple approvers, or multiple disciplines within a single approver organisation. Often the approver will be an authority such as EASA or the relevant national CAA.

The main means by which the change is justified to the approver is through the module of the safety argument which relates to the approver’s domain. The module sets out the claim that, within the given domain, the
change achieves the acceptable level of safety. The approver also needs to be assured that the assurance contracts between this module and the rest of the safety argument are (and will continue to be) satisfied.

The ASCOS Method does not (directly) affect who is responsible for approval of the change; the change needs to be approved by an approver in accordance with all the identified applicable regulations and the agreed approval plan. (Where the approval is a certification, this is also known as the certification basis).

Where multiple domains are affected by the change, approval by all the relevant approvers is required before the change is put into operation.

As before, with staged changes, the approver responsible for approval may be different at different stages of the change.

The approver will review the approval plan(s) received from the applicant and change leader to determine whether the proposed approach will lead to a safety argument which the approver will be able to approve when supported by the appropriate evidence. (Where there are multiple applicants and authorities involved, each approver will only approve the relevant module of the safety argument. It is important that, at the planning stage, it is clearly agreed between the change leader, applicants and approvers, that between them they are able to approve all aspects of the proposed change and safety argument. This must include ensuring that the top level claim and the strategy for decomposition of this claim is acceptable to all approvers.)

The approver will then approve the relevant module of the safety argument for the change and assure themselves that the assurance contracts between the module and the rest of the safety argument are satisfied, according to the programme agreed in the approval plan. The approver undertakes this review in order to reduce the probability of an unsafe change entering operational service. The approver will only approve the change if it has been adequately supported by the safety argument module presented by the applicant. It is not for the regulator to augment the safety argument or to provide an alternative safety argument in order to approve the change. Approval can only be based upon the contents of the delivered safety argument, together with any documented clarifications or further information supplied in response to the approver’s enquiries.

7.1.4 Argument Architect

The argument architect is responsible for ensuring that the modules of the safety argument, when taken together, present a complete safety argument for the change across the whole TAS. One of the main tasks here is to ensure that the assurance contracts between the modules are fully defined and are satisfied by the individual modules.

For simple changes, the change leader may take the role of argument architect throughout the lifecycle of the change. Where the change leader is also the operator of the changed part of the TAS, they may retain responsibility for the safety argument once the change is introduced to operational service.
For multi-domain changes, it is critical that the argument architect can view the change from the perspective of the overall TAS to ensure that the safety argument takes into account the requirements of all the domains. For such changes, it may be necessary to constitute a steering group (the TESG – see section 7.1.5) including representatives from the key stakeholder organisations to ensure the safety argument is consistent with the needs of all stakeholders.

It should be noted that responsibility for the safety argument may change during the lifecycle of the change. For example, a specification may be developed by a cross-industry group, and at this stage the argument architect may be a TESG led by manufacturing organisations. However, the design of a solution to meet this specification would be undertaken by individual manufacturers, each acting as argument architect for their own development. (At this stage, the safety argument is likely to include proprietary information which stakeholders would not be willing to share across the industry.) A further transfer of responsibility would occur when considering introduction to service, where the safety argument would be led by the aspiring operator of the equipment, who will retain responsibility for the safety argument once the change has been introduced to operational service.

7.1.5 TAS Engineering and Safety Group (TESG)

Where a change affects multiple domains, the impact on all domains needs to be fully managed throughout the development of the change. It is important to maintain the safety argument to be consistent, complete and correct, and aligned to the actual change. It is also important to ensure that the interfaces between different parts of the TAS (often between domains) are managed to ensure that any dependencies are clearly expressed, understood and satisfied. This is especially true where multiple organisations are involved, as it is easy for different parts of the development (and the corresponding modules of the safety argument) to become out of step.

ASCOS proposes that any complex development should be co-ordinated by a TAS Engineering and Safety Group (TESG); the TESG would be responsible for co-ordinating all the engineering and safety activities involved in the development of the change. The TESG would therefore play the role of argument architect for changes involving multiple organisations. The change leader (see section 7.1.1) would convene the TESG and provide direction: the TESG would then ensure that this direction is implemented consistently across the change.

Note: as the TESG is a co-ordination group and not a legal entity, it would not be able to act as an applicant for an approval; approval would only be granted to a legal entity able to take responsibility for the change which is approved. The type of approval which as TESG might be involved in is one for a jointly developed specification (e.g. stage 1 in Table 3 in section 4.5.1); however the approval granted here is of the specification, rather than to an individual applicant.

50 This may seem obvious, but it is easy for the definition of the change to be altered during the change lifecycle: it takes good management of the change to ensure that the development, assessment and safety argument are updated in line with each other and with the definition of the change.

51 This proposal is presented in section 6.3.8 of the WP3 final report [5].
7.1.6 Manufacturer

Where the change is (simply) the development and certification of a new product (which may be an entire aircraft), the change leader will be the manufacturer of the product (who will also be the applicant). However, even in this case, it is likely that the manufacturer will be supplied with parts by other manufacturers.

For other changes, the manufacturer(s) will be suppliers to the change leader, but will not themselves be either change leader or an applicant. This is also true in domains (e.g. ATM) where products are not subject to certification.

The approval-related requirements on the manufacturer should be expressed as claims in a module of the safety argument. The manufacturer will then be responsible for development of this module and provision of supporting evidence in order to support these claims, and to satisfy any other assurance contracts placed on the manufacturer.

In some cases, there will also be providers of services to the change leader (e.g. provision of telecomms services): they would be responsible for a module of the safety argument in the same way.

7.1.7 Affected Organisations

A change will usually also affect other organisations not directly involved in the development or approval of the change.

These are organisations which interface to the changed part of the TAS (e.g. maintainers, pilots, air traffic controllers) and whose activities may be affected by the change but where there is no specific approval application needed.

These organisations should be included in the consultation process to ensure that any effect on them is fully evaluated and taken into account in the safety assessment.

7.2 Participation within the steps of the ASCOS Method

Table 7 shows the expected involvement of each of the types of organisation described in section 7.1 in the separate steps of the ASCOS Method. Blank cells imply that the organisation has no active involvement.
Table 7: Participation within the steps of the ASCOS Method

<table>
<thead>
<tr>
<th>Step</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Change Leader (supported by TESG)</td>
</tr>
<tr>
<td>Identify the need</td>
<td>The need for a change may be identified by one or more parties across industry: the type of need will then drive which organisation(s) become change leader.</td>
</tr>
<tr>
<td>Develop change definition</td>
<td>Lead definition of change at TAS level</td>
</tr>
<tr>
<td>Develop approval path</td>
<td>Lead definition of approval path, in collaboration with individual applicants where appropriate</td>
</tr>
<tr>
<td>Develop solution</td>
<td>Lead development of solution at TAS level</td>
</tr>
<tr>
<td>Obtain approval</td>
<td>Ensure applications for approval are co-ordinated and consistent</td>
</tr>
<tr>
<td>Operational Service</td>
<td>Introduce change into operation and monitor occurrences of precursor events or other incidents</td>
</tr>
</tbody>
</table>
8 Conclusions and Recommendations

This section presents the conclusions of the development of the ASCOS Method and recommendations for further work, as follows:

- Section 8.1 presents a summary of the achievements of this work package to develop the consolidated new approval method, referred to as the ASCOS Method.
- Section 8.2 reviews the ASCOS Method against the principles established earlier in the programme as fundamental to any new method.
- Section 8.3 presents recommendations for further work to improve the ASCOS Method.

8.1 Conclusions

The ASCOS Programme was established to explore the need for adaptation of existing approval processes in response to:

- fundamental changes in the institutional arrangements for aviation regulation in Europe
- the introduction of new technologies and operations
- demands for higher levels of safety performance

The objective of the programme was to develop novel approval processes and supporting design methods and tools to ease the approval of safety enhancement systems and operations. The programme was tasked with providing a method which delivers:

- efficiency in terms of cost and time
- ability to analyse and demonstrate acceptable safety for new concepts and technologies
- ability to analyse and consider the entire aviation system rather than sub-elements in isolation

Initial activities reviewed current approval processes and chose four options for improvement as well as a set of principles to be adopted by the new ASCOS Method. The initial proposal for an ASCOS Method (published as ASCOS D1.3 [3]) comprised eleven steps based around the construction of a safety argument to support the claim that the change made to the Total Aviation System (TAS) would achieve the defined acceptable level of safety.

Following the publication of D1.3 [3], the eleven step method was applied to four case studies representing possible changes to the TAS. The aim was to exercise the method and provide feedback to improve it. Although these case studies struggled in their application of the steps, they yielded very useful feedback, both in written form and through the involvement of the authors of the D1.3 method. A comprehensive set of recommendations has been published [39] based on the results of the case studies and on separate validation exercises undertaken with the ASCOS User Group. These recommendations have been used to refine the ASCOS Method into the form presented in this report.
The consolidated ASCOS Method presented in this report focuses on establishing an approval path for a change to the TAS and then providing support for following that approval path through the lifecycle of development and deployment of the change. The ASCOS Method is presented as a framework of activities which can be adapted and iterated as required, rather than a rigid process of sequential steps.

The ASCOS Method uses existing approaches which are adapted and augmented only when necessary. (This may be to accommodate innovation, to ensure interfaces are managed or simply to streamline the process.) The ASCOS Method provides a framework for development of such adaptations, which provides support throughout the lifecycle, starting with identification of the concept and establishing its viability, through development and implementation into operation and sustainment. However, the activities do not depend on a particular lifecycle being followed. The ASCOS Method is not just applicable to certification; it is also applicable to more general approvals.

The approval path is supported by development of a modular safety argument to support the claim that the acceptable level of safety is achieved by the change to the TAS. The safety argument is presented as a hierarchical set of claims, supported by evidence and is developed to consider all aspects of the TAS affected by the change. The safety argument is partitioned into modules, each containing the safety argument relevant to an individual domain of the TAS. Dependencies between these modules are expressed as assurance contracts agreed between the owners of the modules.

The modular structure of the safety argument allows the modules to be developed separately by the stakeholders in the individual domains in confidence that the final result will be a consistent, complete and correct overall safety argument. This structure also allows clear separation between the parts of the safety argument which need to be approved by the different approvers involved. However, this also introduces a significant risk of divergence between the modules in ways which were not envisaged when the modules were created. It is therefore necessary to ensure that the argument is properly maintained and integrated throughout the development by an argument architect.

The structure of the safety argument can be presented in a graphical form (e.g. Goal Structuring Notation (GSN)) to aid understanding, although it is always supported by text which explains what is being claimed. The logical argument uses the same basic concepts as the SESAR Safety Reference Material (SRM) [15] (in turn based on EUROCONTROL Safety Assessment Method (SAM) [9] and Safety Assessment Made Easier (SAM-E) [27] approaches): these have been developed to provide specific guidance for application across the TAS. The ASCOS Method provides flexibility to encompass novelty and innovation, while also allowing existing methods and approaches to be retained where appropriate. It also supports the evaluation of the context within which these existing approaches operate, in order to establish whether they need adaptation and, importantly, to record the rationale for such decisions.

The ASCOS Method recognises the significant underlying differences in approach between domains, including levels of safety, assessment methods and terminology, sometimes giving significantly different meanings to the same term. Differences between domains are understandable given the structure and history of the
different parts of the TAS, but careful consideration is therefore needed in building an integrated method. The ASCOS Method does not in itself mandate how safety targets for a change should be established, but recognises that the current high level of safety must be maintained. It is usually not practical to trade off safety between domains because it is difficult to justify a decrease in safety in any one domain. To do this, it would be necessary to provide a robust quantification across all domains which demonstrates a significant overall positive impact on safety. Production of such a robust quantification is made more difficult by the fact that different domains use different types of targets (often with different units), making it difficult to create valid comparisons between domains. A corresponding assessment would be needed in the event of a change with differing impacts on different sovereign states.

The ASCOS Method also addresses the difference between performance based and compliance based approaches. The ASCOS Method allows goal based safety arguments (a performance based approach) using high level, solution independent targets to support the development and assessment of innovative solutions, while also allowing more detailed requirements to be used to ensure consistent application of established solutions. Prescriptive requirements (a compliance based approach) are also useful to constrain interfaces or express well established rules, especially where these relate to interfaces with parts of the TAS unaffected by a change.

Co-ordination between all parties involved in the change is critical to successful and efficient implementation. This is reflected in:

- early engagement between all stakeholders (including the approver), resulting in production and agreement of an approval plan, based on the safety argument, which guides the generation of the evidence needed to support the approval
- the use of assurance contracts to record and manage dependencies between stakeholders, allowing the safety argument to be divided into modules to be supported by individual stakeholders, giving freedom in their substantiation of the safety argument, as long as the assurance contracts are satisfied
- the establishment, where appropriate, of a steering committee (the TESG) for development and assurance of the change, with representatives drawn from all the relevant organisations and disciplines

Guidance is provided in this report to show how the safety argument, and the activities, should be adapted according to the needs of an individual change. This recognises that although the overall concept can be applied to any change, the actual safety argument required will vary widely depending on the particular change to be made – for example, the safety argument for introduction of a new equipment item on an aircraft will be very different from the safety argument for a change to the arrivals concept at a particular aerodrome.

Application in the Case Studies, supported by the validation exercises, shows that the ASCOS Method is capable of analysing and demonstrating acceptable safety for new concepts and technologies, considering the
Entire TAS rather than sub-elements in isolation, therefore delivering two of the three objectives set in the ASCOS remit. However, it is difficult to introduce the flexibility to accommodate innovation and to address changes which span the TAS (the second and third objectives above) without having a negative impact on the cost and efficiency of the approval process, at least in the short term. In addition, the innovations envisaged within aviation may also drive up the scale and complexity of the safety assurance required, having a further negative impact on the efficiency of the approval process, especially given the limited availability of expert safety assurance resource. However, this barrier needs to be overcome in order to realise the significant operational, financial and safety benefits which are available and which outweigh the increased cost of safety assurance. In addition, there was consensus within the ASCOS analysis that cost and efficiency of the assurance will improve in the medium and longer term as the ASCOS Method becomes established within the community.

Inevitably, further improvements and refinements are possible. A list of recommendations is presented in the next section of this report.

However, the greatest opportunity for improvement will come from application of the ASCOS Method in earnest in real situations. The ASCOS Consortium therefore commends this ASCOS Method to EASA for adoption as a means of establishing approval for changes to the Total Aviation System within Europe.

8.2 Assessment

As discussed in section 1.2, earlier work within this ASCOS work package identified a series of principles to be employed by any new approval method. Table 8 reviews how these principles have been addressed in the ASCOS Method.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Means of Addressing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid unnecessary change, recognising the good approaches already in place</td>
<td>Approval path adopts existing approaches where appropriate with adaptation and / or augmentation where necessary to support innovation</td>
</tr>
<tr>
<td>Provide a generic certification framework encompassing the Total Aviation System (TAS)</td>
<td>Safety argument composed of modules encompasses whole TAS and establishes assurance contracts between the separate domains and organisations as necessary.</td>
</tr>
<tr>
<td>Use a common language across all domains based on safety argument concepts (e.g. argument-based as used in OPENCOSS), allowing flexibility to accommodate a variety of approaches across domains</td>
<td>Standard terminology has been adopted and is explained in Appendix A.</td>
</tr>
<tr>
<td>Principle</td>
<td>Means of Addressing</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Provide rigorous management of interfaces, both between domains and between the TAS and its environment, to ensure that all key safety issues are properly addressed and not lost at interfaces</td>
<td>Assurance contracts between modules established as a means of documenting, agreeing and monitoring issues across interfaces.</td>
</tr>
<tr>
<td>Allow, within each domain, the new method to evolve from current approaches by keeping the existing approach where no change is required, learning lessons from other domains where this gives improvement and ensuring that bottlenecks and shortcomings are addressed by the proposed approach.</td>
<td>Addressed by basing the approval for a given change on the existing approval path within the domain, adapted or augmented as necessary to refine the approach.</td>
</tr>
<tr>
<td>Promote flexibility within each domain to allow introduction of new technologies or procedures</td>
<td>Flexibility provided by the use of a safety argument framework which allows for new approaches to be developed where necessary to encompass innovation.</td>
</tr>
<tr>
<td>Harmonise approaches between domains where this is advantageous or necessary</td>
<td>Framework provided by the ASCOS Method described in this document; harmonisation of assessment processes and standards addressed in a separate ASCOS work package and reported in D3.6 [5]</td>
</tr>
<tr>
<td>Simplify existing processes, where there are demonstrable benefits and no loss of confidence in the assurance of safety</td>
<td>Simplification and harmonisation of detailed processes was addressed in ASCOS WP3 (see D3.6 [5]).</td>
</tr>
<tr>
<td>Reinforce existing techniques where they are appropriate but not consistently applied</td>
<td>Development of the ASCOS Method has not explicitly considered reinforcement of existing techniques, but this could be a side effect of the evaluation of techniques which forms part of the ASCOS Method (see section 8.3.1).</td>
</tr>
<tr>
<td>Provide a mechanism for identification and resolution of further bottlenecks and shortcomings</td>
<td>Development of the approval path required by the ASCOS Method includes steps to review the existing approaches used in the domain to identify inefficiencies and to refine / revise them as necessary</td>
</tr>
<tr>
<td>Introduce a bridge between the regulations in different domains where needed, in particular between aircraft certification and Air Traffic Management</td>
<td>Assurance contracts between modules established as a means of documenting, agreeing and monitoring issues across interfaces.</td>
</tr>
</tbody>
</table>
Principle | Means of Addressing
---|---
Take into account the electronic hardware more explicitly in the proposed approach | The purpose of the ASCOS Method is to develop a framework across the TAS; at the level of such a framework it is not appropriate to address specific concerns relating to the assurance of electronic hardware. (A recommendation for further research in this area is made in section 8.3.8.)

Consider the fact that less experience is gained by the flight crew when more automation is used | ASCOS Method includes framework for assessing the impact of a change across the TAS, including any unintended or unforeseen changes.

Table 8: Assessment against principles established for development of new approval method

8.3 Recommendations

This section contains recommendations for work which would improve or support the ASCOS Method. (Note: we have included recommendations from other ASCOS reports only where they are pertinent to the conclusions of this report.)

8.3.1 Adoption of ASCOS Method

The ASCOS Consortium recommends adoption of the ASCOS Method as the method to be used when making changes to the TAS.

The ASCOS Method can be applied to any change; where changes are sufficiently routine and their effects are contained within a single domain, an early evaluation will establish that the approval path for the change relies solely on existing approaches and requires no further adaptation. The lessons learned from application of the ASCOS Method should be used to further refine the method.

The ASCOS Method includes steps to evaluate existing techniques to establish whether they remain appropriate for development of innovative solutions; this evaluation could also be used to reinforce existing techniques where they remain appropriate.

8.3.2 Documentation of Implicit Safety Arguments

The ASCOS Consortium recommends documentation of the implicit safety arguments currently followed in the individual domains. Safety arguments are often implicitly defined by the approval process followed in individual domains. Documentation of implicit safety arguments will make it easier to develop robust safety arguments for changes where the existing approval path needs to be modified to accommodate the change.

8.3.3 Sharing of Safety Risk Information

The ASCOS Consortium recommends that the EC or EASA promotes the sharing of safety risk information between TAS stakeholders. The success of the ASCOS Method depends critically on establishing open...
communication between stakeholders involved in a particular change. However, the exchange of proprietary information is often blocked by an organisation’s legal department because of concern that information may either damage an organisation’s reputation or may put them at a competitive disadvantage. It is therefore unlikely that such information will be freely shared without some promotion and/or enforcement by the EC or by EASA.

(This recommendation was previously proposed in the ASCOS Validation Results [39] (REC1.09) where further details can be found.)

8.3.4 Definition of Domains

The ASCOS Consortium recommends that the definitions of the individual domains of the TAS should be further refined, taking into account both the EASA regulatory structures and the operational structures within the TAS.

8.3.5 Refinement of TESG Concept

The ASCOS WP3 final report [5] proposes the establishment of a TAS Engineering and Safety Group (TESG) for any complex change. This TESG would be responsible for co-ordinating the engineering and safety activities involved in the development of a change. This is a very important role in ensuring that the interfaces between stakeholders are properly established and that open communications are possible throughout the lifecycle of a change. The concept of a TESG is also strongly related to the concept of an argument architect, which is critical to the ASCOS Method.

The ASCOS Consortium recommends that further research is undertaken into how TESGs could be established and how they could fulfil the role of argument architect for complex changes. This research should further develop the remit already proposed by ASCOS WP3 [5].

Success of the TESG concept is also dependent on the establishment of open communications as covered in the separate recommendation in section 8.3.3.

8.3.6 Example Safety Arguments

The ASCOS Method intentionally provides an adaptable framework for developing approval paths and safety arguments for individual changes. Effort has focussed on establishing the framework which forms the ASCOS Method; it has not been possible to develop detailed applications of this framework to multiple real applications. In addition, it is fundamental to the ASCOS Method that existing safety assessment approaches are utilised as far as possible, and adapted or augmented only where necessary. The case studies provided valuable feedback to refine the method, but did not yield detailed examples of end-to-end application of the final method. In addition ASCOS WP3 [5] proposed a unified framework for safety assessment processes across all domains of the TAS.
The ASCOS Method would significantly benefit from being complemented by detailed worked examples for a variety of types of change and domains, showing how the existing approaches are evaluated, incorporated and adapted or augmented. These examples could be extended as the ASCOS Method is applied to an increasing number of changes and form an ever expanding of repository of guidance for application of the method.

However, it is noted that these examples should never be viewed as templates which can be simply picked up and applied without intellectual effort: the temptation to do this will be great, but each change will be different and will need detailed consideration on its own merits.

8.3.7 Trade-Off of Safety Between Domains

The research undertaken by ASCOS has highlighted the difficulty of justifying changes where, although there is a significant safety benefit overall, there is a safety disbenefit in one domain of the TAS. As discussed in sections 2.5 and 6.3.8, such changes require robust justification demonstrating a significant overall positive impact on safety. Such justifications are made more difficult by the fact that individual domains use different units and means of measurement.

The ASCOS Safety Risk Model (see D3.6 [5]) has built on previous work and has made steps towards establishing a way in which such comparisons between domains can be made. However, this model is not yet a sufficiently mature and complete model of the whole TAS to form a basis for the robust justifications needed to trade off safety between domains.

The ASCOS Consortium recommends further research in this area in order to move towards a situation where it is possible to trade off safety between domains and thus support the approval of changes which deliver an overall benefit to safety where there is a (small) disbenefit in a single domain.

8.3.8 Certification of Electronic Equipment

The principles identified early in WP1 included a desire to take electronic hardware more fully into account. As explained in section 8.2, it was not possible to consider this detailed concern within the development of the ASCOS Method.

Certification of such equipment is well-established in the aircraft domain and in parts of other industries (e.g. railway signalling). It is perceived by other TAS domains (e.g. ATM) that introduction of certification would make it easier to develop and deploy such equipment.

The ASCOS Consortium recommends further research into the introduction of certification for electronic equipment across the TAS, with a particular emphasis on equipment used for ATM. This research should pay particular attention to ensuring that the certification approach recognises the importance of the environment within which equipment is used and the need to evaluate this for each application. (For example, it is necessary to examine the effect of use with different operating procedures, different types of air traffic and different traffic volumes.) The research should also consider that, where the market in equipment is relatively small (e.g. in ATM), the cost of any certification scheme to the manufacturers must be kept low enough to
ensure that suppliers are able to implement it without leading to unacceptable increases in the price of the equipment.

8.3.9 Selection of Changes for Review

Review of a change by the approver is a key part of the approval process; it is important that the approver selects appropriately which changes should be reviewed. Some guidance is presented in section 6.6.1 based on criteria used by the UK CAA. However, further research in this area may benefit approvers by enabling them to concentrate resources on the changes most needing their attention.

The ASCOS Consortium recommends further research into the factors which affect the development of safe changes in order to support approvers in making decisions about how these changes should be reviewed.
References

<table>
<thead>
<tr>
<th>#</th>
<th>Authors(s), Title, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ASCOS, Outline Proposed Certification Approach (D1.3 Version 1.2), 2013</td>
</tr>
<tr>
<td>4</td>
<td>ASCOS, WP1 Final Report (D1.6), 2015</td>
</tr>
<tr>
<td>5</td>
<td>ASCOS, WP3 Final Report Safety Risk Management (D3.6 Version 1.2), 2014</td>
</tr>
<tr>
<td>6</td>
<td>EUROCONTROL, European Operational Concept Validation Methodology (E-OCVM Version 3.0) Volume 1, 2010</td>
</tr>
<tr>
<td>7</td>
<td>ASCOS, WP2 Final Report Continuous Safety Monitoring (D2.5 Version 1.3), 2014</td>
</tr>
<tr>
<td>9</td>
<td>EUROCONTROL, Safety Assessment Methodology (SAF.ET1.ST03.1000-MAN-01 Edition 2.1), 2006</td>
</tr>
<tr>
<td>10</td>
<td>EASA, Composite Aircraft Structure (AMC20-29 - Annex II to ED Decision 2010/003/R), 2010</td>
</tr>
<tr>
<td>12</td>
<td>Origin Consulting, GSN Community Standard, Version 1, 2011</td>
</tr>
<tr>
<td>15</td>
<td>SESAR: Safety Reference Material, Edition 00.02.01, Project ID 16.06.01, 30th Jan 2012</td>
</tr>
<tr>
<td>16</td>
<td>Dr TP Kelly COMSA/2001/1/1: Concepts and Principles of Compositional Safety Case Construction, 2001</td>
</tr>
<tr>
<td>17</td>
<td>Charles Haddon-Cave QC, The Nimrod Review – An independent review into the broader issues surrounding the loss of the RAF Nimrod MR2 Aircraft XV230 in Afghanistan in 2006, 2009</td>
</tr>
<tr>
<td>18</td>
<td>OPENCROSS, Baseline for the Common Certification Language (D4.1 Version 1.0), 2012</td>
</tr>
<tr>
<td>21</td>
<td>Hahn and Oaksford, A Bayesian approach to informal argument fallacies, Synthese (2006) 152 pp 207 – 236</td>
</tr>
<tr>
<td>23</td>
<td>EASA, Opinion 03-2014: Requirements for service providers and the oversight thereof, 2014</td>
</tr>
<tr>
<td>#</td>
<td>Authors(s), Title, Year</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>24</td>
<td>RTCA, Guidelines for Approval of the Provision and Use of Air Traffic Services Supported by Data Communications (DO-264 also known as ED-78A), 2000</td>
</tr>
<tr>
<td>26</td>
<td>UK Parliament, Health and Safety at Work Act, 1974</td>
</tr>
<tr>
<td>27</td>
<td>EUROCONTROL Safety Assessment Made Easier – Part 1 Safety Principles and an Introduction to Safety Assessment (Edition 1.0), 2010</td>
</tr>
<tr>
<td>28</td>
<td>EASA, Certification Specifications for Small Rotorcraft (CS-27 Amendment 3 - Annex to ED Decision 2012/021/R), 2012</td>
</tr>
<tr>
<td>30</td>
<td>EUROCAE, Guidelines for Development of Civil Aircraft and Systems (ED-79A), 2011</td>
</tr>
<tr>
<td>32</td>
<td>EUROCAE, Process for specifying risk classification scheme and deriving safety objectives in ATM (ED-125), 2010</td>
</tr>
<tr>
<td>33</td>
<td>RTCA, Software Considerations in Airborne Systems and Equipment Certification (DO-178C), 2011</td>
</tr>
<tr>
<td>34</td>
<td>IEC, Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems (IEC 61508)</td>
</tr>
<tr>
<td>35</td>
<td>RTCA, Environmental Conditions and Test Procedures for Airborne Equipment (DO-160), 2010</td>
</tr>
<tr>
<td>36</td>
<td>ASCOS, Evaluation of certification case studies (D4.5 Version 1.0), 2015</td>
</tr>
<tr>
<td>37</td>
<td>UK CAA, Air Traffic Services Safety Requirements (CAP 670 Version 3 / Amendment 1), 2014</td>
</tr>
<tr>
<td>38</td>
<td>UK CAA, Acceptable Means of Compliance to CAP 670 SW 01: Guidance for Producing SW 01 Safety Arguments for COTS Equipment (Issue 3), 2010</td>
</tr>
<tr>
<td>39</td>
<td>ASCOS, Validation Results (D5.4), 2015</td>
</tr>
<tr>
<td>41</td>
<td>ISO / IEC, Systems and software engineering — Systems and software assurance (BS ISO / IEC 15026)</td>
</tr>
<tr>
<td>42</td>
<td>OMG, Structured Assurance Case Metamodel (SACM), Version 1.0, 2013</td>
</tr>
<tr>
<td>#</td>
<td>Authors(s), Title, Year</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>47</td>
<td>Wagner S. et al, A Case Study on Safety Cases in the Automotive Domain: Modules, Patterns and Models, 2010</td>
</tr>
<tr>
<td>48</td>
<td>Bates S. et al, Safety case architectures to complement a contract-based approach to designing safe systems, 2003</td>
</tr>
<tr>
<td>52</td>
<td>EC, Regulation laying down implementing rules for the airworthiness and environmental certification of aircraft and related products, parts and appliances, as well as for the certification of design and production organisations (EC748/2012), 2012</td>
</tr>
</tbody>
</table>
Appendix A Terminology Reference and Abbreviations

Terms which have specific meanings within the ASCOS Method are defined in Table 9. Where these terms are used in this document they are shown in italic type.

Where possible terms have been given the same meaning as they have across the European aviation industry and a different term is used where a different meaning is intended. Where this has not been possible, this is highlighted within the definition given in the table.

Abbreviations used in this document are listed in Table 10.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
<th>Related term(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptable level of safety</td>
<td>the level of safety which the approver requires the change to achieve. Note that it may be acceptable for the change to maintain the existing level of safety. (See sections 2.5, 6.3.8.)</td>
<td></td>
</tr>
<tr>
<td>applicant</td>
<td>responsible for making the application to the relevant approver for approval of a change (or part thereof) to the total aviation system (TAS). For an operational change, this will usually be the organisation which is putting the change into operational service; for other changes (e.g. certification of a new product or aircraft) this will usually be the manufacturer. (See section 7.1.2.)</td>
<td></td>
</tr>
<tr>
<td>approval</td>
<td>declaration by the approver that the change meets the set of requirements, including the acceptable level of safety, agreed in the approval plan. For an operational change, this is the permission required before the change can be placed into operational service. The term approval is used in this document to differentiate from certification which often has a narrow interpretation of certifying a product to a specific set of (generic) requirements. (See section 2.1.) (Approval is the term used in the recently proposed EASA IR on oversight of (air traffic) service providers [23].)</td>
<td>approval path, approval plan, approver, certification</td>
</tr>
<tr>
<td>approval path</td>
<td>the approach followed by the applicant to gain approval for the change; this will follow existing established approaches where possible, but these may be adapted or augmented by new approaches where necessary to accommodate innovation or to ensure that the approach addresses the whole TAS. (See section 3.2.)</td>
<td>approval, approval plan, approver</td>
</tr>
<tr>
<td>Term</td>
<td>Meaning</td>
<td>Related term(s)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>approval plan</td>
<td>document in which the applicant sets out the safety argument for the change and describes how and when the supporting evidence will be produced. The approval plan is agreed between applicant and approver early in the lifecycle and forms the basis for the approver’s review of the applicant’s submissions.</td>
<td>approval, approval path, approver</td>
</tr>
<tr>
<td>approver</td>
<td>responsible for approving a change; for an operational change this gives permission for it to be placed into operational service. For many changes the approver will be the relevant authority; however not all changes require approval by an authority. (See section 7.1.3.)</td>
<td>approval, approval path, approval plan</td>
</tr>
<tr>
<td>argument architect</td>
<td>responsible for constructing and maintaining the safety argument for the change. In particular the argument architect will focus on ensuring that, where multiple organisations are involved, their contributions, when taken together form a complete, consistent and correct safety argument. (See section 7.1.4.)</td>
<td>safety argument</td>
</tr>
<tr>
<td>assumption</td>
<td>a statement which is believed to be true and which is assumed to be true for the purpose of the safety argument but which is not (yet) supported by evidence</td>
<td>caveat</td>
</tr>
<tr>
<td>assurance contract</td>
<td>definition of interface between modules of the safety argument; intention is that the owner of the module has freedom in developing it, as long as the assurance contract is satisfied</td>
<td>module</td>
</tr>
<tr>
<td>authority</td>
<td>an agency or body created by a government and provided with institutionalized and legal power to perform a specific function; in this context of the ASCOS Method, this is used to refer to an organisation competent to approve changes to a particular part of the TAS; the approver of a change will often, but not always, be the competent authority in that system domain</td>
<td>approver, competent authority</td>
</tr>
<tr>
<td>caveat</td>
<td>something which must be taken into account when considering the conclusions of the safety argument. This is a general term encompassing assumptions, conditions, constraints, limitations and safety issues.</td>
<td>assumptions, conditions, constraints, limitations and safety issues</td>
</tr>
<tr>
<td>certification</td>
<td>any form of recognition by a competent authority that a product, part or appliance, organisation or person complies with the applicable requirements (See section 2.1.)</td>
<td>approval</td>
</tr>
<tr>
<td>certification basis</td>
<td>agreed set of standards with which an applicant has to demonstrate that the subject item (or organisation) is compliant in order for the approver to grant certification</td>
<td>certification</td>
</tr>
<tr>
<td>Term</td>
<td>Meaning</td>
<td>Related term(s)</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>change</td>
<td>any alteration to the TAS, beyond intended operational use or maintenance. The purpose of applying the ASCOS Method is to obtain approval for a change to the TAS.</td>
<td></td>
</tr>
<tr>
<td>change leader</td>
<td>the organisation primarily motivated to introduce the change.</td>
<td></td>
</tr>
<tr>
<td>claim</td>
<td>a proposition (true or false statement) which is asserted as part of the safety argument</td>
<td>safety argument</td>
</tr>
<tr>
<td>competent authority</td>
<td>an authority with the inherent competence in a specific area; the approver of a change will often, but not always, be the competent authority in that system domain</td>
<td>authority, approver</td>
</tr>
<tr>
<td>condition</td>
<td>something which must be fulfilled before a claim is valid</td>
<td>caveat, assumption, safety issue, limitation</td>
</tr>
<tr>
<td>constraint</td>
<td>a restriction in the design or integration of components required for a claim to be valid</td>
<td>caveat, assumption, condition, safety issue, limitation</td>
</tr>
<tr>
<td>domain</td>
<td>one of the subparts of the TAS; the term domain is not precisely defined in this document and a proposed area of further work is to provide a rigorous definition of the domains of the TAS (See Appendix B.)</td>
<td>total aviation system</td>
</tr>
<tr>
<td>hazard</td>
<td>a condition which could cause or contribute to unsafe operation within the TAS (Adapted from ICAO SMM [40] section 2.13.2.)</td>
<td>introduced hazard, inherent hazard</td>
</tr>
<tr>
<td>inherent hazard(^52)</td>
<td>a hazard which is present in the TAS before the introduction of the change</td>
<td>hazard, introduced hazard</td>
</tr>
<tr>
<td>introduced hazard(^52)</td>
<td>a hazard introduced to the TAS as a result of the change, for example due to a failure of a component introduced by the change</td>
<td>hazard, inherent hazard</td>
</tr>
<tr>
<td>limitation</td>
<td>a restriction on the (scope of) deployment and / or operation of the change. (From EUROCONTROL Safety Case Development Manual [13])</td>
<td>caveat, assumption, safety issue, condition</td>
</tr>
<tr>
<td>logical design</td>
<td>a definition of the change at the level of machine-based functions, human roles and tasks, but not defining the specific equipment, procedures or training</td>
<td></td>
</tr>
<tr>
<td>module</td>
<td>a subdivision of the safety argument, related to other modules by means of assurance contracts</td>
<td>safety argument, assurance contract</td>
</tr>
</tbody>
</table>

\(^{52}\) The distinction between inherent hazards and introduced hazards is made mainly in order to highlight that (a) there are hazards already in the TAS before any changes are introduced and (b) changes can, in themselves introduce hazards. It is more important to ensure that all hazards are identified and mitigated, than to worry about classifying them correctly.
Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
<th>Related term(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>operational change</td>
<td>a change which, when introduced into operational service, will directly affect the TAS; this should be contrasted with certification of a new product (including an aircraft), which does not directly affect the TAS, until it is introduced into operational service.</td>
<td>change</td>
</tr>
<tr>
<td>safety argument</td>
<td>a logical argument formed from a connected set of claims, supporting information and evidence used to persuade the reader that the proposed change will achieve the defined acceptable level of safety.</td>
<td></td>
</tr>
<tr>
<td>safety issue</td>
<td>an issue which must be resolved before a claim can be considered to be valid</td>
<td>caveat, assumption, limitation, condition</td>
</tr>
<tr>
<td>strategy</td>
<td>an element of the safety argument, explaining how a parent claim is achieved by the supporting sub-claims</td>
<td>claim</td>
</tr>
<tr>
<td>total aviation system (TAS)</td>
<td>the whole aviation system (See Appendix B.)</td>
<td>domain</td>
</tr>
</tbody>
</table>

Table 9: Terms used with specific meanings in D1.5

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARS</td>
<td>Automated Aircraft Recovery System</td>
</tr>
<tr>
<td>ACARE</td>
<td>Advisory Council for Aviation Research and Innovation in Europe</td>
</tr>
<tr>
<td>ACAS</td>
<td>Airborne Collision Avoidance System</td>
</tr>
<tr>
<td>AIP</td>
<td>Aeronautical Information Publication</td>
</tr>
<tr>
<td>AIS</td>
<td>Aeronautical Information Service</td>
</tr>
<tr>
<td>AltMoC</td>
<td>Alternative Means of Compliance</td>
</tr>
<tr>
<td>AMC</td>
<td>Acceptable Means of Compliance</td>
</tr>
<tr>
<td>ANS</td>
<td>Air Navigation Service</td>
</tr>
<tr>
<td>ANSP</td>
<td>Air Navigation Service Provider</td>
</tr>
<tr>
<td>AOC</td>
<td>Air Operator Certificate</td>
</tr>
<tr>
<td>AoC</td>
<td>Area of Change</td>
</tr>
<tr>
<td>ASCOS</td>
<td>Aviation Safety and Certification of new Operations and Systems</td>
</tr>
<tr>
<td>ATCO</td>
<td>Air Traffic COnroller</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management</td>
</tr>
<tr>
<td>ATS</td>
<td>Air Traffic Services</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Aviation Authority</td>
</tr>
<tr>
<td>CATS</td>
<td>Causal model for Air Transport Safety</td>
</tr>
<tr>
<td>CENELEC</td>
<td>European Committee for Electrotechnical Standardization</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFIT</td>
<td>Controlled Flight Into Terrain</td>
</tr>
<tr>
<td>CofA</td>
<td>Certificate of Airworthiness</td>
</tr>
<tr>
<td>CS</td>
<td>Certification Specification</td>
</tr>
<tr>
<td>CSM</td>
<td>Continuous Safety Monitoring; Common Safety Method</td>
</tr>
<tr>
<td>EASp</td>
<td>European Aviation Safety Plan</td>
</tr>
<tr>
<td>EASA</td>
<td>European Aviation Safety Agency</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EFB</td>
<td>Electronic Flight Bag</td>
</tr>
<tr>
<td>E-OCVM</td>
<td>European Operational Concept Validation Methodology</td>
</tr>
<tr>
<td>ESD</td>
<td>Event Sequence Diagram</td>
</tr>
<tr>
<td>ETSO</td>
<td>European Technical Standard Order</td>
</tr>
<tr>
<td>EUROCAE</td>
<td>European Organisation for Civil Aviation</td>
</tr>
<tr>
<td>EUROCONTROL</td>
<td>European Organisation for the Safety of Air Navigation</td>
</tr>
<tr>
<td>FAST</td>
<td>Future Aviation Safety Team</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>FTA</td>
<td>Fault Tree Analysis</td>
</tr>
<tr>
<td>GSN</td>
<td>Goal Structuring Notation</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IMA</td>
<td>Integrated Modular Avionics</td>
</tr>
<tr>
<td>IR</td>
<td>Implementing Rule</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JARUS</td>
<td>Joint Authorities For Rulemaking of Unmanned Systems</td>
</tr>
<tr>
<td>LOC-I</td>
<td>Loss Of Control - Inflight</td>
</tr>
<tr>
<td>LURS</td>
<td>Light Unmanned Rotorcraft Systems</td>
</tr>
<tr>
<td>MCC</td>
<td>Means of Compliance Checklist</td>
</tr>
<tr>
<td>OMG</td>
<td>Object Management Group</td>
</tr>
<tr>
<td>OPENC OSS</td>
<td>Open Platform for Evolutionary Certification of Safety-Critical Systems</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RNP</td>
<td>Required Navigation Performance</td>
</tr>
<tr>
<td>RPAS</td>
<td>Remotely Piloted Aircraft System</td>
</tr>
<tr>
<td>RTCA</td>
<td>Radio Technical Commission for Aeronautics</td>
</tr>
<tr>
<td>RVSM</td>
<td>Reduced Vertical Separation Minima</td>
</tr>
<tr>
<td>SACM</td>
<td>Structured Assurance Case Metamodel</td>
</tr>
<tr>
<td>SAM-E</td>
<td>Safety Assessment Made Easier</td>
</tr>
<tr>
<td>SARPS</td>
<td>Standards and Recommended Practices</td>
</tr>
<tr>
<td>SCDM</td>
<td>Safety Case Development Manual</td>
</tr>
<tr>
<td>SEooC</td>
<td>Safety Element out of Context</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>SESAR</td>
<td>Single European Sky ATM Research</td>
</tr>
<tr>
<td>SMM</td>
<td>Safety Management Manual</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety Management System</td>
</tr>
<tr>
<td>SPI</td>
<td>Safety Performance Indicator</td>
</tr>
<tr>
<td>SRAC</td>
<td>Safety Related Application Condition</td>
</tr>
<tr>
<td>SRG</td>
<td>Safety Regulation Group</td>
</tr>
<tr>
<td>SRM</td>
<td>Safety Reference Material; Safety Risk Model</td>
</tr>
<tr>
<td>TAS</td>
<td>Total Aviation System</td>
</tr>
<tr>
<td>TC</td>
<td>Type Certificate</td>
</tr>
<tr>
<td>TESG</td>
<td>TAS Engineering and Safety Group</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>WP</td>
<td>Work Package</td>
</tr>
</tbody>
</table>

Table 10: Abbreviations used in this document
Appendix B The Total Aviation System (TAS)

The Total Aviation System (TAS) approach is based on the fact that the aviation system components – products, operators, crews, and aerodromes, ATM, ANS, on the ground or in the air - are part of a single system where all the parts interact. It is thus important to consider the impact of a change on the whole system, and to do this it is important to understand the parts of the system and how they interact. It is particularly important to understand the interfaces between the parts of the system, as it is here at the interfaces where interactions can easily be overlooked or misunderstood, leading to potential safety problems.

The term system is used here to mean the whole system, i.e. concepts, equipment, people and processes - not just the physical components.

The Total Aviation System can be defined at a number of levels, including:

a. functional specification, including high level functions, performance, operational behaviour and modes of operation;

b. logical design: a high-level architectural representation of the system, independent from the implementation. As such it considers the functions provided by the system elements (i.e. human roles and tasks and machine-based functions), but not the equipment, personnel or procedures which provide these functions.

c. implementation: the details of equipment (hardware, software and data), people (flight crew, controllers and maintainers), operation and maintenance procedures, training and sectorisation.

One of the concepts introduced in the ASCOS Method is to subdivide the TAS into domains, and there are different ways in which this can be done. As the ASCOS Method is about approval of changes, there is merit in aligning these domains to the structure of the applicable regulations, as portrayed in the EASA Regulations Structure, as shown in Figure 25. (Some of the illustrations in the body of this document use an adapted version of this structure.) However, there are aspects of the TAS (e.g. manufacturers, especially of non-airborne equipment) which are not clearly visible in this structure: it is sometimes useful to use a functional breakdown, as shown in Figure 26.

One recommendation for further research (see section 8.3) is to develop a subdivision of the TAS which is aligned to the EASA regulation structure but which also captures the relevant interactions between the parts of the system.
Figure 25: EASA Regulations Structure
In Figure 26, the TAS is subdivided as follows, and the interactions between these elements (and with the external environment) are shown:

- **ATM / ANS equipment**: this is the equipment used by the ANSP to provide the air navigation service.
- **Air Navigation Service Provider (ANSP)**: responsible for the provision of navigation information to aircraft with the aim of ensuring safe separation (both between aircraft and between aircraft and terrain); this includes navigation systems, MET systems, AIS, surface movement monitoring – also
operation and maintenance of these systems, including training and licensing of controllers and engineers.

- Aircraft manufacture: this covers the certification of the aircraft, including the onboard equipment; this includes design, manufacture, upgrade and instructions for ongoing maintenance, although the actual maintenance is undertaken by the aircraft operator.

- Aircraft operator: this covers flight operations, flight crew selection, training and licensing (including ensuring ongoing competence) and aircraft maintenance in accordance with the procedures laid down by the manufacturer (including selection, training and licensing of maintainers).

- Aerodrome: this covers all aspects of the aerodrome relevant to the TAS (except where already covered by other domains such as ATM / ANS or aircraft / airworthiness) and includes: physical structure (e.g. the runways and taxiways), airfield lighting, security arrangements, management of ground movements – also operation and maintenance of these systems.

- Airspace planning: this covers the strategic planning of the airspace structure and the procedures and protocols for providing air transportation within that airspace structure.
Appendix C Goal Structuring Notation

The safety argument which forms the basis of this Safety Case is presented in Goal Structuring Notation (GSN). See ‘Goal Structuring Notation Community Standard’ [12] for an overview of the notation and its rationale. A key to the symbols used in this document is given in Figure 27 and Figure 28 below.

Elements of the argument are numbered uniquely and hierarchically. Elements providing context to goals and strategies are numbered using the number of that element, plus “–n” to provide unique identification.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Statement of a requirement or target to be met. The argument below it aims to show that it is true.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy</td>
<td>Describes the means for achieving the parent goal by decomposition into sub-goals</td>
</tr>
<tr>
<td>Solution</td>
<td>Evidence of direct satisfaction of a goal</td>
</tr>
<tr>
<td>Model</td>
<td>Model of a system and/or its environment, which supports the argument</td>
</tr>
<tr>
<td>Context</td>
<td>Additional information necessary to understand, expand or solve a goal or strategy</td>
</tr>
<tr>
<td>Justification</td>
<td>Additional information which explains the rationale for a goal or strategy</td>
</tr>
<tr>
<td>Assumption</td>
<td>Information on which the argument depends, but over which the system has no direct control</td>
</tr>
</tbody>
</table>

A diamond is added to a goal to show that it has not yet been developed further.

If all the goals at this level are shown to be satisfied, then (assuming that the reader accepts the argument) the parent goal is satisfied.

The Safety Argument is complete when all Sub-Goals have been decomposed to the point where they have solutions.

Figure 27: Key to basic GSN Symbols
Figure 28: Key to GSN Symbols for Modular Arguments
Appendix D The Use of Safety Arguments in Industry

Safety arguments have been accepted across a range of industries for over 15 years as a means of enabling clear, concise and traceable arguments for safety assurance to be presented to regulators.

D.1 Development of Standards

ISO/IEC 15026 [41] introduces the concept of an Assurance Case as being the representation of a claim or claims and the support for these claims. The standard applies across the whole systems and software engineering lifecycle. An assurance case provides a multi-level structure of claims, sub-claims and connecting arguments that are ultimately based on evidence and assumptions that provide a reasoned, auditable argument supporting a claim – in essence a Logical Argument.

The Object Management Group® (OMG®) is an international, open membership, not-for-profit technology standards consortium, founded in 1989. The OMG have developed a Structured Assurance Case Metamodel (SACM) [42] which is a conceptual model for an assurance case structure. Part of the OMG SACM specification defines the Argumentation and Evidence Metamodels which facilitate projects by allowing them to effectively and succinctly communicate in a structured way how systems and services are meeting their assurance requirements. The SACM provides a modelling framework to allow users to express and exchange argument structures. Structured arguments comprise argument elements (primary claims) that are being asserted by the author for the argument, together with relationships that are asserted to hold between those nodes.

The Goal Structuring Notation (GSN) Standard [12] was developed by means of a consensus process involving GSN users from academia and industry between 2007 and 2011. GSN is a graphical notation that can be used to document explicitly the individual elements of any argument (claims, evidence and contextual information) and also the relationships that exist between those elements i.e. how claims are supported by other claims, and ultimately by evidence. Arguments documented using this notation can help provide assurance of critical properties of systems, services and organisations.

D.2 Previous Uses in Aviation

The safety argument approach has already been successfully applied to achieve approval for novel concepts in certain parts of the TAS, providing a degree of confidence of its suitability for use in the approval of further novel concepts proposed for introduction in the European aviation industry. Furthermore, the preparation of a safety case for functional airspace blocks is required in EC legislation.

The EUROCONTROL Safety Case Development Manual (SCDM) [13] provides guidance on the approach to developing safety arguments in relation to the demonstration of the safety of a system or service within the aviation industry.

Past applications of the approach are numerous but include:

- the operation of military Unmanned Aerial Vehicles (UAVs) in non-segregated airspace [43]
- Reduced Vertical Separation Minima (RVSM) [44]
the development of the Point Merge operational concept [45]
the introduction of ACAS into European airspace [46]

It should be noted that the RVSM safety case was an early application of the approach and has been subject to extensive review and criticism in the safety community. The flaws identified emphasise the importance of:

- discipline in argument development to avoid unnecessary complexity; and
- rigorous review of safety arguments to ensure that they are correct and consistent.

It should be noted that just because an argument contains flaws, it does not render the overall argument untrue, see section 5.5.

The approach is also embodied in UK CAA safety requirements publications, including:

- CAP670: Air Traffic Services Safety Requirements [37]
- CAP760: Guidance on the Conduct of Hazard Identification, Risk Assessment and the Production of Safety Cases [14]

D.3 Modular Arguments in Aviation and other Industries

The modular approach to safety arguments was developed to support the concept of Integrated Modular Avionics (IMA), which uses an integrated architecture with application software portable across an assembly of common hardware modules. The concept has been applied both in military and civil aircraft, including the Airbus A380, Boeing 787 and F-22 Raptor. The modular approach has also been applied in the automotive industry. The approach has also been researched within the OPENCOSS programme.

The following papers have been published on the modular approach:

- Concepts and Principles of Compositional Safety Case Construction [16]
- A Case Study on Safety Cases in the Automotive Domain: Modules, Patterns and Models [47]
- Safety case architectures to complement a contract-based approach to designing safe systems [48]
- Safety Case Composition Using Contracts – Refinements based on Feedback from an Industrial Case Study [49]

Modularisation of arguments is already explicitly supported in some industries, as illustrated by the following examples:

- The rail industry (EN50129 [50]) uses the concept of generic safety cases, which document the argument and evidence that a particular product or system is safe in the context of a number of assumptions about the external environment and the use of the product and conditions (Safety Related Application Conditions - SRACs) on its application. The safety argument is then valid for use of the product in any application, as long as the assumptions are (demonstrably) valid and the conditions are met.
The automotive industry uses a similar concept of Safety Element out of Context (SEooC), where a component is developed for some foreseeable hypothetical application. This new component can be re-used in a variety of (different) contexts, subject to provision of the required justification and validation as well the appropriate revision of the safety plan accordingly. When developing or reusing a SEooC, some of the safety lifecycle activities are tailored (ISO 26262-2 [51], Clause 6.4.5.6) to avoid unnecessary replication of the activities.

The notion of cross-acceptance is where equipment already accepted and in service under a particular authority e.g. the competent authority of a particular state, is accepted for use under another authority e.g. in a different state, without the need for reassessment to support the new certification. In practice this only works for the generic product, and the new authority will still need to establish that the application in the new environment meets any specific requirements.

Modular certification is already available for simple airborne components under the European Technical Standard Orders (ETSO) scheme. These authorisations are issued under Part 21, Section A, Subpart O of EC/748/2012 [52]. This certification provides a step towards use of these components, although it is then necessary to additionally apply for approval on board specific aircraft types. Certification has been granted to around 200 components under this scheme. More details of this scheme can be found on the EASA website [53]. There is currently a rulemaking task to develop this approach for Integrated Modular Avionics.